TY - BOOK AU - Inagaki,S. AU - Miura-Kamio,A. AU - Nakamura,Y. AU - Lu,F. AU - Cui,X. AU - Cao,X. AU - Kimura,H. AU - Kimura,H. AU - Kakutani,T. TI - Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome KW - CHROMATIN KW - DNA METHYLATION KW - HISTONE DEMETHYLASE KW - IBM1 KW - TRANSPOSON N2 - In diverse eukaryotes, constitutively silent sequences, such as transposons and repeats, are marked by methylation at histone H3 lysine 9 (H3K9me). Although selective H3K9me is critical for maintaining genome integrity, mechanisms to exclude H3K9me from active genes remain largely unexplored. Here, we show in Arabidopsis that the exclusion depends on a histone demethylase gene, IBM1 (increase in BONSAI methylation). Loss-of-function ibm1 mutation results in ectopic H3K9me and non-CG methylation in thousands of genes. The ibm1-induced genic H3K9me depends on both histone methylase KYP/SUVH4 and DNA methylase CMT3, suggesting interdependence of two epigenetic marks-H3K9me and non-CG methylation. notably, IBM1 enhances loss of H3K9me in transcriptionally de-repressed sequences. Furthermore, disruption of transcription in genes induces ectopic non-CG methylation, which mimics the loss of IBM1 function. We propose that active chromatin is stabilized by an autocatalytic loop of transcription and H3K9 demethylation. This process counteracts a similarly autocatalytic accumulation of silent epigenetic marks, H3K9me and non-CG methylation UR - https://drive.google.com/file/d/1zIs9SfQAtE4UpkuX9D_pcSskcGX3AUYI/view?usp=drivesdk ER -