Image from Google Jackets

Barrier films made with various lamellar block copolymers

Tipo de material: TextoTextoSeries ; Journal of Membrane Science, 270(1-2), p.13-21, 2006Trabajos contenidos:
  • Wang, J
  • Derocher, J.P
  • Wu, L
  • Bates, F.S
  • Cussler, E.L
Tema(s): Recursos en línea: Resumen: The permeabilities of helium, nitrogen, and oxygen across lamellar block copolymers can be accurately estimated from the properties of the glassy and rubbery blocks. The copolymers tested include poly(styrene-b-isoprene-b-styrene), poly(styrene-b-butadience-b-styrene), and poly(lactide-b-isoprene-b-lactide). The results show improvements in barrier properties that tend to be larger than those expected from the resistances of lamellae in series. These increases are not as large as those achieved with impermeable fillers like mica and clay. The changes in film elastic modulus caused by glassy lamellae are also discussed.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-7443 (Browse shelf(Opens below)) Available

The permeabilities of helium, nitrogen, and oxygen across lamellar block copolymers can be accurately estimated from the properties of the glassy and rubbery blocks. The copolymers tested include poly(styrene-b-isoprene-b-styrene), poly(styrene-b-butadience-b-styrene), and poly(lactide-b-isoprene-b-lactide). The results show improvements in barrier properties that tend to be larger than those expected from the resistances of lamellae in series. These increases are not as large as those achieved with impermeable fillers like mica and clay. The changes in film elastic modulus caused by glassy lamellae are also discussed.

There are no comments on this title.

to post a comment.