Image from Google Jackets

Phenolic composition and biological activities of stingless bee honey: An overview based on its aglycone and glycoside compounds

Tipo de material: TextoTextoSeries ; Food Research Internationa, 147, p.110553, 2021Trabajos contenidos:
  • Dos Santos, A. C
  • Biluca, F. C
  • Braghini, F
  • Gonzaga, L. V
  • Costa, A. C. O
  • Fett, R
Tema(s): Recursos en línea: Resumen: Stingless bees are native to tropical and subtropical countries, such as Brazil. The wide variety of species, the sources of food collection (nectar and pollen), and the climate conditions strongly affect the chemical composition of the honey, making this a unique product with peculiar characteristics. Stingless bee honey presents higher water content, higher acidity, and a lower sugar concentration when compared to Apis mellifera honey. Moreover, there is a wide variety of microorganisms in stingless bees' environment, which leads their honey to go through a natural fermentative process during its production in the hive. Besides, fermentation and hydrolysis are effective ways to convert glycosides into aglycones, thus increasing the bioavailability of compounds. In this sense, stingless bee honey may possess a greater concentration of phenolic compounds aglycones than glycosides, which would increase its potential benefits. Therefore, this review aims to compile the most recent studies of stingless bee honey phenolic profile and its biological potential (antioxidant, antimicrobial, and anti-inflammatory activities)and a possible connection to its natural fermentation process.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-19080 (Browse shelf(Opens below)) Available

Stingless bees are native to tropical and subtropical countries, such as Brazil. The wide variety of species, the sources of food collection (nectar and pollen), and the climate conditions strongly affect the chemical composition of the honey, making this a unique product with peculiar characteristics. Stingless bee honey presents higher water content, higher acidity, and a lower sugar concentration when compared to Apis mellifera honey. Moreover, there is a wide variety of microorganisms in stingless bees' environment, which leads their honey to go through a natural fermentative process during its production in the hive. Besides, fermentation and hydrolysis are effective ways to convert glycosides into aglycones, thus increasing the bioavailability of compounds. In this sense, stingless bee honey may possess a greater concentration of phenolic compounds aglycones than glycosides, which would increase its potential benefits. Therefore, this review aims to compile the most recent studies of stingless bee honey phenolic profile and its biological potential (antioxidant, antimicrobial, and anti-inflammatory activities)and a possible connection to its natural fermentation process.

There are no comments on this title.

to post a comment.