Image from Google Jackets

Habanero pepper (Capsicum chinense)adaptation to water-deficit stress in a protected agricultural system

Tipo de material: TextoTextoSeries ; Functional Plant Biology, 49(3), p.295-306, 2022Trabajos contenidos:
  • Nieto-Garibay, A
  • Barraza, A
  • Caamal-Chan, G
  • Murillo-Amador, B
  • Troyo-Diéguez, E
  • Burgoa-Cruz, C. A
  • Chaves, M
Tema(s): Recursos en línea: Resumen: Drought is one of the major factors limiting global crop yield. In Mexico, agriculture is expected to be severely affected by drought. The Capsicum genus has several crop species of agricultural importance. In this work, we analysed the Capsicum chinense plant physiological responses and differentially expressed genes under water stress mainly focused on the responses elicited following recovery through repetitive stress. Plants were cultivated in an experimental block. Each block consisted of plants under water deficit and a control group without deficit. Morphometric and functional parameters, and the expression of genes related to resistance to abiotic stresses were measured. Morphological differences were observed. Plants subjected to water deficit showed impaired growth. Nonetheless, in the physiological parameters, no differences were observed between treatments. We selected abiotic stress-related genes that include heat-shock proteins (HSPs), heat-shock factors (HSFs), transcription factors related to abiotic stress (MYB, ETR1, and WRKY), and those associated with biotic and abiotic stress responses (Jar1 and Lox2). HSF, HSP, MYB72, ETR1, Jar1, WRKYa , and Lox2 genes were involved in the response to water-deficit stress in C. chinense plants. In conclusion, our work may improve our understanding of the morphological, physiological, and molecular mechanisms underlying hydric stress response in C. chinense.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-19665 (Browse shelf(Opens below)) Available

Drought is one of the major factors limiting global crop yield. In Mexico, agriculture is expected to be severely affected by drought. The Capsicum genus has several crop species of agricultural importance. In this work, we analysed the Capsicum chinense plant physiological responses and differentially expressed genes under water stress mainly focused on the responses elicited following recovery through repetitive stress. Plants were cultivated in an experimental block. Each block consisted of plants under water deficit and a control group without deficit. Morphometric and functional parameters, and the expression of genes related to resistance to abiotic stresses were measured. Morphological differences were observed. Plants subjected to water deficit showed impaired growth. Nonetheless, in the physiological parameters, no differences were observed between treatments. We selected abiotic stress-related genes that include heat-shock proteins (HSPs), heat-shock factors (HSFs), transcription factors related to abiotic stress (MYB, ETR1, and WRKY), and those associated with biotic and abiotic stress responses (Jar1 and Lox2). HSF, HSP, MYB72, ETR1, Jar1, WRKYa , and Lox2 genes were involved in the response to water-deficit stress in C. chinense plants. In conclusion, our work may improve our understanding of the morphological, physiological, and molecular mechanisms underlying hydric stress response in C. chinense.

There are no comments on this title.

to post a comment.