Image from Google Jackets

Nanotechnology-Enabled Sensors [recurso electrónico] / by Kourosh Kalantar-zadeh, Benjamin Fry.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Boston, MA : Springer US, 2008Descripción: online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387680231
  • 99780387680231
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 620.115 23
Recursos en línea:
Contenidos:
Sensor Characteristics and Physical Effects -- Transduction Platforms -- Nano Fabrication and Patterning Techniques -- Characterization Techniques for Nanomaterials -- Inorganic Nanotechnology Enabled Sensors -- Organic Nanotechnology Enabled Sensors.
En: Springer eBooksResumen: Nanotechnology provides us with tools to create functional materials, devices, and systems by controlling materials at the atomic and molecular scales, and at the same time make use of novel properties and phenomena. Considering that most chemical and biological sensors, as well as many physical sensors, depend on interactions occurring within the nano scale range, the impact that nanotechnology will have on the sensor world is significant. Nanotechnology enabled sensors find applications in several novel fields such as sensing single molecules, bio-hazards, toxic chemicals, gas sensors, process control and diagnostics. Application of nanostructured materials for biological applications, biologically assisted nanofabrication, and the development of next-generation of biosensors and biomedical instrumentation for improved sensing is increasingly attracting interests in the scientific community.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 620.115 (Browse shelf(Opens below)) Available

Sensor Characteristics and Physical Effects -- Transduction Platforms -- Nano Fabrication and Patterning Techniques -- Characterization Techniques for Nanomaterials -- Inorganic Nanotechnology Enabled Sensors -- Organic Nanotechnology Enabled Sensors.

Nanotechnology provides us with tools to create functional materials, devices, and systems by controlling materials at the atomic and molecular scales, and at the same time make use of novel properties and phenomena. Considering that most chemical and biological sensors, as well as many physical sensors, depend on interactions occurring within the nano scale range, the impact that nanotechnology will have on the sensor world is significant. Nanotechnology enabled sensors find applications in several novel fields such as sensing single molecules, bio-hazards, toxic chemicals, gas sensors, process control and diagnostics. Application of nanostructured materials for biological applications, biologically assisted nanofabrication, and the development of next-generation of biosensors and biomedical instrumentation for improved sensing is increasingly attracting interests in the scientific community.

There are no comments on this title.

to post a comment.