Image from Google Jackets

Variational Methods in Imaging [recurso electrónico] / by Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, Frank Lenzen.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Applied Mathematical Sciences ; 167Editor: New York, NY : Springer New York, 2009Descripción: online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387692777
  • 99780387692777
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 515.64 23
Recursos en línea:
Contenidos:
Fundamentals of Imaging -- Case Examples of Imaging -- Image and Noise Models -- Regularization -- Variational Regularization Methods for the Solution of Inverse Problems -- Convex Regularization Methods for Denoising -- Variational Calculus for Non-convex Regularization -- Semi-group Theory and Scale Spaces -- Inverse Scale Spaces -- Mathematical Foundations -- Functional Analysis -- Weakly Differentiable Functions -- Convex Analysis and Calculus of Variations.
En: Springer eBooksResumen: This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Key Features: - Introduces variational methods with motivation from the deterministic, geometric, and stochastic point of view - Bridges the gap between regularization theory in image analysis and in inverse problems - Presents case examples in imaging to illustrate the use of variational methods e.g. denoising, thermoacoustics, computerized tomography - Discusses link between non-convex calculus of variations, morphological analysis, and level set methods - Analyses variational methods containing classical analysis of variational methods, modern analysis such as G-norm properties, and non-convex calculus of variations - Uses numerical examples to enhance the theory This book is geared towards graduate students and researchers in applied mathematics. It can serve as a main text for graduate courses in image processing and inverse problems or as a supplemental text for courses on regularization. Researchers and computer scientists in the area of imaging science will also find this book useful.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 515.64 (Browse shelf(Opens below)) Available

Fundamentals of Imaging -- Case Examples of Imaging -- Image and Noise Models -- Regularization -- Variational Regularization Methods for the Solution of Inverse Problems -- Convex Regularization Methods for Denoising -- Variational Calculus for Non-convex Regularization -- Semi-group Theory and Scale Spaces -- Inverse Scale Spaces -- Mathematical Foundations -- Functional Analysis -- Weakly Differentiable Functions -- Convex Analysis and Calculus of Variations.

This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Key Features: - Introduces variational methods with motivation from the deterministic, geometric, and stochastic point of view - Bridges the gap between regularization theory in image analysis and in inverse problems - Presents case examples in imaging to illustrate the use of variational methods e.g. denoising, thermoacoustics, computerized tomography - Discusses link between non-convex calculus of variations, morphological analysis, and level set methods - Analyses variational methods containing classical analysis of variational methods, modern analysis such as G-norm properties, and non-convex calculus of variations - Uses numerical examples to enhance the theory This book is geared towards graduate students and researchers in applied mathematics. It can serve as a main text for graduate courses in image processing and inverse problems or as a supplemental text for courses on regularization. Researchers and computer scientists in the area of imaging science will also find this book useful.

There are no comments on this title.

to post a comment.