Image from Google Jackets

Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes

Tipo de material: TextoTextoSeries ; Carbohydrate Polymers, 44(2), p.167-173, 2001Trabajos contenidos:
  • Osman, Z
  • Ibrahim, Z.A
  • Arof, A.K
Tema(s): Recursos en línea: Resumen: Cast films of chitosan acetate, plasticized chitosan acetate, chitosan acetate containing salt and plasticized chitosan acetate-salt complexes were used to obtain some insight on the mechanism of ionic conductivity in chitosan-based polymer electrolytes. The films are largely amorphous. The conductivity is due to the mobile ions from the salt. The role of the plasticizer is to dissociate the salt thereby increasing the number of mobile ions, which lead to conductivity enhancement. The conductivity was calculated using the bulk impedance obtained through impedance spectroscopy. The Cole-Cole plots illustrating the variation of the negative imaginary impedance with the real impedance do not always show the double layer reactance but the plot of dielectric constant e r versus frequency tends to a maximum at low frequencies. The real and imaginary parts of the electrical modulus of samples containing salt show a "long tail" feature, which is not found in the electrical modulus spectra of the unsalted samples. This long tail feature can be attributed to high capacitance, which further supports the plasticizer's role as an agent to dissociate the salt into ions
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-14291 (Browse shelf(Opens below)) Available

Cast films of chitosan acetate, plasticized chitosan acetate, chitosan acetate containing salt and plasticized chitosan acetate-salt complexes were used to obtain some insight on the mechanism of ionic conductivity in chitosan-based polymer electrolytes. The films are largely amorphous. The conductivity is due to the mobile ions from the salt. The role of the plasticizer is to dissociate the salt thereby increasing the number of mobile ions, which lead to conductivity enhancement. The conductivity was calculated using the bulk impedance obtained through impedance spectroscopy. The Cole-Cole plots illustrating the variation of the negative imaginary impedance with the real impedance do not always show the double layer reactance but the plot of dielectric constant e r versus frequency tends to a maximum at low frequencies. The real and imaginary parts of the electrical modulus of samples containing salt show a "long tail" feature, which is not found in the electrical modulus spectra of the unsalted samples. This long tail feature can be attributed to high capacitance, which further supports the plasticizer's role as an agent to dissociate the salt into ions

There are no comments on this title.

to post a comment.