Image from Google Jackets

Auxin biosynthesis: spatial regulation and adaptation to stress

Tipo de material: TextoTextoSeries ; Journal of Experimental botany, https://doi.org/10.1093/jxb/erz283, 2019Trabajos contenidos:
  • Blakeslee, J. J
  • Spatola Rossi, T
  • Kriechbaumer, V
Tema(s): Recursos en línea: Resumen: The plant hormone auxin is essential for plant growth and development, controlling both organ development and overall plant architecture. Auxin homeostasis is regulated by coordination of biosynthesis, transport, conjugation, sequestration/storage, and catabolism to optimize concentration-dependent growth responses and adaptive responses to temperature, water stress, herbivory and pathogens. At present, the best defined pathway of auxin biosynthesis is the TAA/YUC route, in which the tryptophan aminotransferases TAA and TAR and YUCCA flavin-dependent monooxygenases produce the auxin indole-3-acetic acid from tryptophan. This review highlights recent advances in our knowledge of TAA/YUC-dependent auxin biosynthesis focussing on membrane localisation of auxin biosynthetic enzymes, differential regulation in root and shoot tissue, and auxin biosynthesis during abiotic stress.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-17807 (Browse shelf(Opens below)) Available

The plant hormone auxin is essential for plant growth and development, controlling both organ development and overall plant architecture. Auxin homeostasis is regulated by coordination of biosynthesis, transport, conjugation, sequestration/storage, and catabolism to optimize concentration-dependent growth responses and adaptive responses to temperature, water stress, herbivory and pathogens. At present, the best defined pathway of auxin biosynthesis is the TAA/YUC route, in which the tryptophan aminotransferases TAA and TAR and YUCCA flavin-dependent monooxygenases produce the auxin indole-3-acetic acid from tryptophan. This review highlights recent advances in our knowledge of TAA/YUC-dependent auxin biosynthesis focussing on membrane localisation of auxin biosynthetic enzymes, differential regulation in root and shoot tissue, and auxin biosynthesis during abiotic stress.

There are no comments on this title.

to post a comment.