Image from Google Jackets

Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome

Tipo de material: TextoTextoSeries ; Current Biology,  5(9), p.1023-1029, 1995Trabajos contenidos:
  • Powell, W
  • Morgante, M
  • McNicol, J.W
  • Machray, G.C
  • Doyle, J.J
  • Rafalski, J.A
Recursos en línea: Resumen: Background: The study of plant populations is greatly facilitated by the deployment of chloroplast DNA markers. Asymmetric inheritance, lower effective population sizes and perceived lower mutation rates indicate that the chloroplast genome may have different patterns of genetic diversity compared to nuclear genomes. Convenient assays that would allow intraspecific chloroplast variability to be detected are required. Results: Eukaryote nuclear genomes contain ubiquitous simple sequence repeat (microsatellite) loci that are highly polymorphic in length; these polymorphisms can be rapidly typed by the polymerase chain reaction (PCR). Using primers flanking simple mononucleotide repeat motifs in the chloroplast DNA of annual and perennial soybean species, we demonstrate that microsatellites in the chloroplast genome also exhibit length variation, and that this polymorphism is due to changes in the repeat region. Furthermore, we have observed a nonrandom geographic distribution of variations at these loci, and have examined the number and location of such repeats within the chloroplast genomes of other species. Conclusions: PCR-based analysis of mononucleotide repeats may be used to detect both intraspecific and interspecific variability in the chloroplast genomes of seed plants. The analysis of polymorphic microsatellites thus provides an important experimental tool to examine a range of issues in plant genetics.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-6404 (Browse shelf(Opens below)) Available

Artículo

Background: The study of plant populations is greatly facilitated by the deployment of chloroplast DNA markers. Asymmetric inheritance, lower effective population sizes and perceived lower mutation rates indicate that the chloroplast genome may have different patterns of genetic diversity compared to nuclear genomes. Convenient assays that would allow intraspecific chloroplast variability to be detected are required. Results: Eukaryote nuclear genomes contain ubiquitous simple sequence repeat (microsatellite) loci that are highly polymorphic in length; these polymorphisms can be rapidly typed by the polymerase chain reaction (PCR). Using primers flanking simple mononucleotide repeat motifs in the chloroplast DNA of annual and perennial soybean species, we demonstrate that microsatellites in the chloroplast genome also exhibit length variation, and that this polymorphism is due to changes in the repeat region. Furthermore, we have observed a nonrandom geographic distribution of variations at these loci, and have examined the number and location of such repeats within the chloroplast genomes of other species. Conclusions: PCR-based analysis of mononucleotide repeats may be used to detect both intraspecific and interspecific variability in the chloroplast genomes of seed plants. The analysis of polymorphic microsatellites thus provides an important experimental tool to examine a range of issues in plant genetics.

There are no comments on this title.

to post a comment.