Image from Google Jackets

Additive manufacturing of nanotube-loaded thermosets via direct ink writing and radio-frequency heating and curing

Tipo de material: TextoTextoSeries ; Carbon, 200, p.307-316, 2022Trabajos contenidos:
  • Sarmah, A
  • Desai, S. K
  • Crowley, A. G
  • Zolton, G. C
  • Tezel, G. B
  • Harkin, E. M
  • Green, M. J
Tema(s): Recursos en línea: Resumen: Direct Ink Writing (DIW)is an extrusion-based additive manufacturing method where the print medium is a liquid-phase 'ink' dispensed out of nozzles and deposited along digitally defined paths. Conventional DIW of thermosetting resins relies on viscosity modifying agents, novel crosslinking chemistries, and/or long curing schedules in an oven. Here we demonstrate the use of a co-planar radio frequency applicator to generate an electric field, which can be used to rapidly heat and cure nano-filled composite resins as they are printed. This method avoids the need for an oven or post-curing step. This process consists of a sequential print-and-cure cycle which allows for printing of high-resolution, multi-layered structures. Every extruded layer is partially cured using RF before depositing the next layer; this allows the printed part to maintain structural integrity. The process enables both increased throughput and decreased touch time relative to traditional manufacturing. Commercial epoxy resin with varied nano-filler loadings were examined as DIW candidates. After printing, the thermo-mechanical properties, surface finish, and shape retention of RF-cured samples were comparable to conventionally cured samples. This method of manufacturing establishes RF heating as a suitable alternative to conventional methods, facilitating rapid, free-form processing of thermosetting resins without a mold.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-19594 (Browse shelf(Opens below)) Available

Direct Ink Writing (DIW)is an extrusion-based additive manufacturing method where the print medium is a liquid-phase 'ink' dispensed out of nozzles and deposited along digitally defined paths. Conventional DIW of thermosetting resins relies on viscosity modifying agents, novel crosslinking chemistries, and/or long curing schedules in an oven. Here we demonstrate the use of a co-planar radio frequency applicator to generate an electric field, which can be used to rapidly heat and cure nano-filled composite resins as they are printed. This method avoids the need for an oven or post-curing step. This process consists of a sequential print-and-cure cycle which allows for printing of high-resolution, multi-layered structures. Every extruded layer is partially cured using RF before depositing the next layer; this allows the printed part to maintain structural integrity. The process enables both increased throughput and decreased touch time relative to traditional manufacturing. Commercial epoxy resin with varied nano-filler loadings were examined as DIW candidates. After printing, the thermo-mechanical properties, surface finish, and shape retention of RF-cured samples were comparable to conventionally cured samples. This method of manufacturing establishes RF heating as a suitable alternative to conventional methods, facilitating rapid, free-form processing of thermosetting resins without a mold.

There are no comments on this title.

to post a comment.