Image from Google Jackets

Thermoelastic analysis of 3D generally anisotropic bodies by the boundary element method

Tipo de material: TextoTextoSeries ; European Journal of Computational Mechanics, 25(1-2), p.91-108, 2016Trabajos contenidos:
  • Shiah, Y.C
  • Tan, C.L
Tema(s): Recursos en línea: Resumen: In the boundary element method (BEM)for stress analysis, it is well known that thermal loads give rise to an additional volume integral in the primary form of the boundary integral equation (BIE). This volume integral needs to be further transformed to surface ones in order to retain the characteristic of the BEM as a boundary solution technique. In this study of the BEM for 3D thermoelasticity in general anisotropy, the fundamental solutions are expressed as Fourier series with coefficients calculated using an explicit-form Green's function. In the exact volume-to-surface integral transformation associated with the term for the thermal effects in the BIE, a new kernel function is constructed. All formulations are implemented in an existing BEM code for 3D elastostatic analysis. Some numerical examples are presented to demonstrate the veracity of the formulations and the implementation, where the numerical results are compared with those obtained using the finite element method (FEM).
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-16736 (Browse shelf(Opens below)) Available

In the boundary element method (BEM)for stress analysis, it is well known that thermal loads give rise to an additional volume integral in the primary form of the boundary integral equation (BIE). This volume integral needs to be further transformed to surface ones in order to retain the characteristic of the BEM as a boundary solution technique. In this study of the BEM for 3D thermoelasticity in general anisotropy, the fundamental solutions are expressed as Fourier series with coefficients calculated using an explicit-form Green's function. In the exact volume-to-surface integral transformation associated with the term for the thermal effects in the BIE, a new kernel function is constructed. All formulations are implemented in an existing BEM code for 3D elastostatic analysis. Some numerical examples are presented to demonstrate the veracity of the formulations and the implementation, where the numerical results are compared with those obtained using the finite element method (FEM).

There are no comments on this title.

to post a comment.