Image from Google Jackets

Intracellular innate immune surveillance devices in plants and animals

Tipo de material: TextoTextoSeries ; Science, 354(6316), p.aaf6395, 2016Trabajos contenidos:
  • Jones, J. D
  • Vance, R. E
  • Dangl, J. L
Recursos en línea: Resumen: Multicellular eukaryotes coevolve with microbial pathogens, which exert strong selective pressure on the immune systems of their hosts. Plants and animals use intracellular proteins of the nucleotide-binding domain, leucine-rich repeat (NLR)superfamily to detect many types of microbial pathogens. The NLR domain architecture likely evolved independently and convergently in each kingdom, and the molecular mechanisms of pathogen detection by plant and animal NLRs have long been considered to be distinct. However, microbial recognition mechanisms overlap, and it is now possible to discern important key trans-kingdom principles of NLR-dependent immune function. Here, we attempt to articulate these principles. We propose that the NLR architecture has evolved for pathogen-sensing in diverse organisms because of its utility as a tightly folded "hair trigger" device into which a virtually limitless number of microbial detection platforms can be integrated. Recent findings suggest means to rationally design novel recognition capabilities to counter disease.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-19747 (Browse shelf(Opens below)) Available

Multicellular eukaryotes coevolve with microbial pathogens, which exert strong selective pressure on the immune systems of their hosts. Plants and animals use intracellular proteins of the nucleotide-binding domain, leucine-rich repeat (NLR)superfamily to detect many types of microbial pathogens. The NLR domain architecture likely evolved independently and convergently in each kingdom, and the molecular mechanisms of pathogen detection by plant and animal NLRs have long been considered to be distinct. However, microbial recognition mechanisms overlap, and it is now possible to discern important key trans-kingdom principles of NLR-dependent immune function. Here, we attempt to articulate these principles. We propose that the NLR architecture has evolved for pathogen-sensing in diverse organisms because of its utility as a tightly folded "hair trigger" device into which a virtually limitless number of microbial detection platforms can be integrated. Recent findings suggest means to rationally design novel recognition capabilities to counter disease.

There are no comments on this title.

to post a comment.