Image from Google Jackets

Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

Tipo de material: TextoTextoSeries ; Journal of Hazardous Materials, 160, p.559-567, 2008Trabajos contenidos:
  • Rama Krishna, K
  • Philip, L
Tema(s): Recursos en línea: Resumen: Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better ?tted to Freundlich model and K values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60 percent of adsorbed pesticides whereas; organic solvents were able to affect 50-80 percent of sorbed pesticides. Clay content and organic matter played a signi?cant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-15371 (Browse shelf(Opens below)) Available

Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better ?tted to Freundlich model and K values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60 percent of adsorbed pesticides whereas; organic solvents were able to affect 50-80 percent of sorbed pesticides. Clay content and organic matter played a signi?cant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils.

There are no comments on this title.

to post a comment.