000 02030nam a2200193Ia 4500
003 MX-MdCICY
005 20250625124707.0
040 _cCICY
090 _aB-7747
245 1 0 _aA Second Kazal-Like Protease Inhibitor from Phytophthora infestans Inhibits and Interacts with the Apoplastic Pathogenesis-Related Protease P69B of Tomato
490 0 _vPlant Physiology, 138, p.1785-1793, 2005
520 3 _aThe plant apoplast forms a protease-rich environment in which proteases are integral components of the plant defense response. Plant pathogenic oomycetes, such as the potato (Solanum tuberosum)and tomato (Lycopersicon esculentum)pathogen Phytophthora infestans, secrete a diverse family of serine protease inhibitors of the Kazal family. Among these, the two-domain EPI1 protein was shown to inhibit and interact with the pathogenesis-related protein P69B subtilase of tomato and was implicated in counter-defense. Here, we describe and functionally characterize a second extracellular protease inhibitor, EPI10, from P. infestans. EPI10 contains three Kazal-like domains, one of which was predicted to be an efficient inhibitor of subtilisin A by an additivity-based sequence to reactivity algorithm (Laskowski algorithm). The epi10 gene was up-regulated during infection of tomato, suggesting a potential role during pathogenesis. Recombinant EPI10 specifically inhibited subtilisin A among the major serine proteases, and inhibited and interacted with P69B subtilase of tomato. The finding that P. infestans evolved two distinct and structurally divergent protease inhibitors to target the same plant protease suggests that inhibition of P69B could be an important infection mechanism for this pathogen.
700 1 2 _aTian, M.
700 1 2 _aBenedetti, B.
700 1 2 _aKamoun, S.
856 4 0 _uhttps://drive.google.com/file/d/1onqDJcXMCYBnftelTOb8bhz4kS4jO74r/view?usp=drivesdk
_zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx
942 _2Loc
_cREF1
008 250602s9999 xx |||||s2 |||| ||und|d
999 _c42069
_d42069