000 01575nam a2200241Ia 4500
003 MX-MdCICY
005 20250625140623.0
040 _cCICY
090 _aB-10010
245 1 0 _aDiscovering microRNAs from deep sequencing data using miRDeep
490 0 _vNature Biotechnology, 26, p.407-415, 2008
520 3 _aThe capacity of highly parallel sequencing technologies to detect small RNAs at unprecedented depth suggests their value in systematically identifying microRNAs (miRNAs). However, the identification of miRNAs from the large pool of sequenced transcripts from a single deep sequencing run remains a major challenge. Here, we present an algorithm, miRDeep, which uses a probabilistic model of miRNA biogenesis to score compatibility of the position and frequency of sequenced RNA with the secondary structure of the miRNA precursor. We demonstrate its accuracy and robustness using published Caenorhabditis elegans data and data we generated by deep sequencing human and dog RNAs. miRDeep reports altogether ~230 previously unannotated miRNAs, of which four novel C. elegans miRNAs are validated by northern blot analysis.
700 1 2 _aFriedlander, M.R.
700 1 2 _aChen, W.
700 1 2 _aAdamidi, C.
700 1 2 _aMaaskola, J.
700 1 2 _aEinspanier, R.
700 1 2 _aKnespel, S.
700 1 2 _aRajewsky, N.
856 4 0 _uhttps://drive.google.com/file/d/19Z8_TmteHHQlyLDiKKU4b613UjPnnMUc/view?usp=drivesdk
_zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx
942 _2Loc
_cREF1
008 250602s9999 xx |||||s2 |||| ||und|d
999 _c44252
_d44252