| 000 | 01940nam a2200289Ia 4500 | ||
|---|---|---|---|
| 003 | MX-MdCICY | ||
| 005 | 20250625140652.0 | ||
| 040 | _cCICY | ||
| 090 | _aB-11526 | ||
| 245 | 1 | 0 | _aDevelopment of a tubular microbial fuel cell (MFC)employing a membrane electrode assembly cathode |
| 490 | 0 | _vJournal of Power Sources, 187(2), p.393-399, 2009 | |
| 520 | 3 | _aTubular microbial fuel cells (MFC)with air cathode might be amenable to scale-up but with increasing volume a mechanically robust, cost-effective cathode structure is required. Membrane electrode assemblies (MEA)are investigated in a tubular MFC using cost-effective cation (CEM)or anion (AEM)exchange membrane. The MEA fabrication mechanically combines a cathode electrode with the membrane between a perforated cylindrical polypropylene shell and tube. Hydrogel application between membrane and cathode increases cathode potential by ¡«100mV over a 0¨C5.5mA range in a CEM-MEA. Consequently, 6.1Wm.3 based on reactor liquid volume (200 cm3)are generated compared with 5Wm.3 without hydrogel. Cathode potential is also improved in AEM-MEA using hydrogel. Electrochemical Impedance Spectroscopy (EIS)to compare MEA¡¯s performance suggests reduced impedance and enhanced membrane¨Ccathode contact areawhenusing hydrogel. Themaximumcoulombic efficiency observed with CEM-MEA is 71 | |
| 650 | 1 | 4 | _aMICROBIAL FUEL CELL |
| 650 | 1 | 4 | _aMEMBRANE ELECTRODE ASSEMBLY |
| 650 | 1 | 4 | _aTUBULAR |
| 650 | 1 | 4 | _aIMPEDANCE SPECTROSCOPY |
| 650 | 1 | 4 | _aION EXCHANGE MEMBRANE |
| 650 | 1 | 4 | _aELECTRO-OSMOTIC DRAG |
| 700 | 1 | 2 | _aKim, J.R. |
| 700 | 1 | 2 | _aPremier, G.C. |
| 700 | 1 | 2 | _aHawkes, F.R. |
| 700 | 1 | 2 | _aDinsdale, R.M. |
| 700 | 1 | 2 | _aGuwy, A.J. |
| 856 | 4 | 0 |
_uhttps://drive.google.com/file/d/1w3JRO3M6v-iE-IE_VRSPz2SQHtje08YQ/view?usp=drivesdk _zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx |
| 942 |
_2Loc _cREF1 |
||
| 008 | 250602s9999 xx |||||s2 |||| ||und|d | ||
| 999 |
_c45742 _d45742 |
||