| 000 | 01191nam a2200241Ia 4500 | ||
|---|---|---|---|
| 003 | MX-MdCICY | ||
| 005 | 20250625153918.0 | ||
| 040 | _cCICY | ||
| 090 | _aB-13213 | ||
| 245 | 1 | 0 | _aProbability Density Estimation Using Adaptive Activation Function Neurons |
| 490 | 0 | _vNeural Processing Letters, 13(1), p.31, 2001 | |
| 520 | 3 | _aIn this paper we deal with the problem of approximating the probability density function of a signal by means of adaptive activation function neurons.We compare the proposed approach to the one based on a mixture of kernels and show through computer simulations that comparable results may be obtained with limited expense in computational efforts. | |
| 650 | 1 | 4 | _aADAPTIVE ACTIVATION FUNCTION NEURONS |
| 650 | 1 | 4 | _aCUMULATIVE DISTRIBUTION FUNCTION |
| 650 | 1 | 4 | _aDIFERENTIAL ENTROPY |
| 650 | 1 | 4 | _aPROBABILITY DENSITY FUNCTION |
| 650 | 1 | 4 | _aSTOCHASTIC GRADIENT |
| 700 | 1 | 2 | _aFiori, S. |
| 700 | 1 | 2 | _aBucciarelli, P. |
| 856 | 4 | 0 |
_uhttps://drive.google.com/file/d/1VgRBvrcFk_HwJ64S7GfEcWjXBaCyftzv/view?usp=drivesdk _zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx |
| 942 |
_2Loc _cREF1 |
||
| 008 | 250602s9999 xx |||||s2 |||| ||und|d | ||
| 999 |
_c47414 _d47414 |
||