000 01191nam a2200241Ia 4500
003 MX-MdCICY
005 20250625153918.0
040 _cCICY
090 _aB-13213
245 1 0 _aProbability Density Estimation Using Adaptive Activation Function Neurons
490 0 _vNeural Processing Letters, 13(1), p.31, 2001
520 3 _aIn this paper we deal with the problem of approximating the probability density function of a signal by means of adaptive activation function neurons.We compare the proposed approach to the one based on a mixture of kernels and show through computer simulations that comparable results may be obtained with limited expense in computational efforts.
650 1 4 _aADAPTIVE ACTIVATION FUNCTION NEURONS
650 1 4 _aCUMULATIVE DISTRIBUTION FUNCTION
650 1 4 _aDIFERENTIAL ENTROPY
650 1 4 _aPROBABILITY DENSITY FUNCTION
650 1 4 _aSTOCHASTIC GRADIENT
700 1 2 _aFiori, S.
700 1 2 _aBucciarelli, P.
856 4 0 _uhttps://drive.google.com/file/d/1VgRBvrcFk_HwJ64S7GfEcWjXBaCyftzv/view?usp=drivesdk
_zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx
942 _2Loc
_cREF1
008 250602s9999 xx |||||s2 |||| ||und|d
999 _c47414
_d47414