000 01774nam a2200265Ia 4500
003 MX-MdCICY
005 20250625160145.0
040 _cCICY
090 _aB-16141
245 1 0 _aLabelMe: A database and web-based tool for image annotation
490 0 _vInternational Journal of Computer Vision, 77(1-3), p.157-173, 2008
520 3 _aWe seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.
650 1 4 _aCOMPUTER AIDED SOFTWARE ENGINEERING
650 1 4 _aDATABASE SYSTEMS
650 1 4 _aOBJECT RECOGNITION
650 1 4 _aSUPERVISORY AND EXECUTIVE PROGRAMS
650 1 4 _aUSER INTERFACES
700 1 2 _aRussell, B.C.
700 1 2 _aTorralba, A.
700 1 2 _aMurphy, K.P.
700 1 2 _aFreeman, W.T.
856 4 0 _uhttps://drive.google.com/file/d/1UmPxNe5nEwd9RWLV5JaA1XBOALOD8H-J/view?usp=drivesdk
_zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx
942 _2Loc
_cREF1
008 250602s9999 xx |||||s2 |||| ||und|d
999 _c50315
_d50315