| 000 | 01476nam a2200229Ia 4500 | ||
|---|---|---|---|
| 003 | MX-MdCICY | ||
| 005 | 20250625160219.0 | ||
| 040 | _cCICY | ||
| 090 | _aB-17902 | ||
| 245 | 1 | 0 | _aLarge Oscillations Around Curled Equilibrium Configurations of Uniformly Loaded Euler-Bernoulli Beams: Numerical and Experimental Evidences |
| 490 | 0 | _vIn Recent Developments in the Theory of Shells. Springer, Cham., p.65-78, 2019 | |
| 520 | 3 | _aIn this paper, we show that equilibrium configurations of a clamped beam under distributed load, resembling a curled pending wire-whose existence has been mathematically established-can be obtained experimentally using 'soft' beams, i.e. beams for which the ratio between amplitude of the load and bending stiffness is large enough. Moreover, we introduce a Hencky-type discrete model, i.e. a finite dimensional Lagrangian model, for the 'soft' Elastica and build a numerical code for determining its motion, in the most general nonlinear regime. This code is able to qualitatively describe observed nonlinear dynamical behavior. | |
| 650 | 1 | 4 | _aNONLINEAR BEAM |
| 650 | 1 | 4 | _aHENCKY BAR-CHAIN |
| 650 | 1 | 4 | _aDISCRETE MODELLING |
| 700 | 1 | 2 | _aBaroudi, D. |
| 700 | 1 | 2 | _aGiorgio, I. |
| 700 | 1 | 2 | _aTurco, E. |
| 856 | 4 | 0 |
_uhttps://drive.google.com/file/d/15pgG_q1b0GbFgXjoQ-qpZ7eNHPIatmst/view?usp=drivesdk _zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx |
| 942 |
_2Loc _cREF1 |
||
| 008 | 250602s9999 xx |||||s2 |||| ||und|d | ||
| 999 |
_c52062 _d52062 |
||