| 000 | 02908nam a2200301Ia 4500 | ||
|---|---|---|---|
| 003 | MX-MdCICY | ||
| 005 | 20250625164353.0 | ||
| 040 | _cCICY | ||
| 090 | _aB-21358 | ||
| 245 | 1 | 0 | _aProtective effects of sugarcane polyphenol against UV-B-induced photoaging in Balb/c mouse skin: Antioxidant, anti-inflammatory, and anti-glycosylation Effects |
| 490 | 0 | _aJournal of Food Science. 89(5), 3048-3063, 2024, DOI: 10.1111/1750-3841.17045 | |
| 520 | 3 | _aAbstract: Although the benefits of sugarcane polyphenol (SP) are well documented, its function in preventing photoaging has not yet been investigated. This study aimed to investigate the protective effects of SP in preventing ultraviolet (UV)-B-induced skin photoaging in Balb/c mice, as well as the underlying mechanism. Chlorogenic acid was determined to be the primary component of SP by using high-performance liquid chromatography-mass spectrometry. SP and chlorogenic acid were orally administrated to mice for 56 days, and UV-B radiation exposure was administered 14 days after SP and chlorogenic acid administration and lasted 42 days to cause photoaging. SP and chlorogenic acid administrations significantly alleviated the UV-B-induced mouse skin photoaging, as indicated by the decrease in epidermal thickness, increase in the collagen (COL) volume fraction, and elevation in type 1 and type 3 COL contents. Notably, both SP and chlorogenic acid effectively reversed the overexpression of matrix metalloproteinase induced by UV-B exposure in the mouse skin. Furthermore, SP and chlorogenic acid reduced the expression of receptor for advanced glycosylation end products in the mice; amplified the activities of antioxidant enzymes superoxide dismutase and catalase; reduced malondialdehyde levels; and decreased inflammatory cytokines interleukin 1?, interleukin 6, and tumor necrosis factor ? levels. SP could be a prospective dietary supplement for anti-photoaging applications due to its antioxidant, anti-inflammatory, and anti-glycosylation attributes, and chlorogenic acid might play a major role in these effects. Practical Application: This study can provide a scientific basis for the practical application of sugarcane polyphenols. We expect that sugarcane polyphenols can be used in food and beverage products to provide flavor while combating skin aging. © 2024 Institute of Food Technologists. | |
| 650 | 1 | 4 | _aSKIN PHOTOAGING |
| 650 | 1 | 4 | _aSUGARCANE POLYPHENOL |
| 700 | 1 | 2 | _aWang J. |
| 700 | 1 | 2 | _aWang M. |
| 700 | 1 | 2 | _aZhang C. |
| 700 | 1 | 2 | _aLi W. |
| 700 | 1 | 2 | _aZhang T. |
| 700 | 1 | 2 | _aZhou Y. |
| 700 | 1 | 2 | _aFlavel M. |
| 700 | 1 | 2 | _aXi Y. |
| 700 | 1 | 2 | _aLi H. |
| 700 | 1 | 2 | _aLiu X. |
| 856 | 4 | 0 |
_uhttps://drive.google.com/file/d/10Nj3PKeG1h7BjzET6uDYLJ8mTfzgoGGU/view?usp=drivesdk _zPara ver el documento ingresa a Google con tu cuenta @cicy.edu.mx |
| 942 |
_2Loc _cREF1 |
||
| 008 | 250602s9999 xx |||||s2 |||| ||und|d | ||
| 999 |
_c55421 _d55421 |
||