| 000 | 01212nam a2200265Ia 4500 | ||
|---|---|---|---|
| 003 | MX-MdCICY | ||
| 005 | 20250626080926.0 | ||
| 040 | _cCICY | ||
| 090 | _aB-20924 | ||
| 245 | 1 | 0 | _aOrthogonal PLS (OPLS) Modeling for Improved Analysis and Interpretation in Drug Design |
| 490 | 0 | _aMolecular Informatics, 31(6-7), p.414-419, 2012 | |
| 500 | _aArtículo | ||
| 520 | 3 | _aPartial least squares (PLS) regression is a flexible data analytical approach, which can be made even more versatile and useful by various modifications. In this article we describe the extension into orthogonal PLS modeling, in terms of two new methods, called OPLS and O2PLS, with similar prediction capacity but improved model interpretation. | |
| 650 | 1 | 4 | _aLATENT VARIABLES |
| 650 | 1 | 4 | _aPREDICTIVE VARIATION |
| 650 | 1 | 4 | _aORTHOGONAL VARIATION |
| 650 | 1 | 4 | _aINTERPRETABILITY |
| 700 | 1 | 2 | _aEriksson, L. |
| 700 | 1 | 2 | _aRosén, J. |
| 700 | 1 | 2 | _a Johansson, E. |
| 700 | 1 | 2 | _aTrygg, J. |
| 856 | 4 | 0 |
_uhttps://drive.google.com/file/d/18vlJSfQ2T3f_zxCJxWFBqI-uBRib94em/view?usp=drive_link _zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx |
| 942 |
_2Loc _cREF1 |
||
| 008 | 250602s9999 xx |||||s2 |||| ||und|d | ||
| 999 |
_c55597 _d55597 |
||