000 01212nam a2200265Ia 4500
003 MX-MdCICY
005 20250626080926.0
040 _cCICY
090 _aB-20924
245 1 0 _aOrthogonal PLS (OPLS) Modeling for Improved Analysis and Interpretation in Drug Design
490 0 _aMolecular Informatics, 31(6-7), p.414-419, 2012
500 _aArtículo
520 3 _aPartial least squares (PLS) regression is a flexible data analytical approach, which can be made even more versatile and useful by various modifications. In this article we describe the extension into orthogonal PLS modeling, in terms of two new methods, called OPLS and O2PLS, with similar prediction capacity but improved model interpretation.
650 1 4 _aLATENT VARIABLES
650 1 4 _aPREDICTIVE VARIATION
650 1 4 _aORTHOGONAL VARIATION
650 1 4 _aINTERPRETABILITY
700 1 2 _aEriksson, L.
700 1 2 _aRosén, J.
700 1 2 _a Johansson, E.
700 1 2 _aTrygg, J.
856 4 0 _uhttps://drive.google.com/file/d/18vlJSfQ2T3f_zxCJxWFBqI-uBRib94em/view?usp=drive_link
_zPara ver el documento ingresa a Google con tu cuenta: @cicy.edu.mx
942 _2Loc
_cREF1
008 250602s9999 xx |||||s2 |||| ||und|d
999 _c55597
_d55597