000 02340nam a22004095i 4500
001 978-0-387-23537-0
003 DE-He213
005 20250710083929.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 _a9780387235370
_a99780387235370
024 7 _a10.1007/b101775
_2doi
082 0 4 _a518
_223
100 1 _aHan, Weimin.
_eauthor.
245 1 2 _aA Posteriori Error Analysis via Duality Theory
_h[recurso electrónico] :
_bWith Applications in Modeling and Numerical Approximations /
_cby Weimin Han.
264 1 _aBoston, MA :
_bSpringer US,
_c2005.
300 _aXVI, 302 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAdvances in Mechanics and Mathematics ;
_v8
505 0 _aPreliminaries -- Elements of Convex Analysis, Duality Theory -- A Posteriori Error Analysis for Idealizations in Linear Problems -- A Posteriori Error Analysis for Linearizations -- A Posteriori Error Analysis for Some Numerical Procedures -- Error Analysis for Variational Inequalities of the Second Kind.
520 _aThis volume provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear variational problems. The author avoids giving the results in the most general, abstract form so that it is easier for the reader to understand more clearly the essential ideas involved. Many examples are included to show the usefulness of the derived error estimates. Audience This volume is suitable for researchers and graduate students in applied and computational mathematics, and in engineering.
650 0 _aMATHEMATICS.
650 0 _aNUMERICAL ANALYSIS.
650 1 4 _aMATHEMATICS.
650 2 4 _aNUMERICAL ANALYSIS.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387235363
830 0 _aAdvances in Mechanics and Mathematics ;
_v8
856 4 0 _uhttp://dx.doi.org/10.1007/b101775
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c56222
_d56222