000 02961nam a22004695i 4500
001 978-0-387-31240-8
003 DE-He213
005 20250710083948.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 _a9780387312408
_a99780387312408
024 7 _a10.1007/0-387-31240-4
_2doi
082 0 4 _a006.3
_223
100 1 _aNikolaev, Nikolay Y.
_eauthor.
245 1 0 _aAdaptive Learning of Polynomial Networks
_h[recurso electrónico] :
_bGenetic Programming, Backpropagation and Bayesian Methods /
_cby Nikolay Y. Nikolaev, Hitoshi Iba.
264 1 _aBoston, MA :
_bSpringer US,
_c2006.
300 _aXIV, 316 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGenetic and Evolutionary Computation
505 0 _aInductive Genetic Programming -- Tree-Like PNN Representations -- Fitness Functions and Landscapes -- Search Navigation -- Backpropagation Techniques -- Temporal Backpropagation -- Bayesian Inference Techniques -- Statistical Model Diagnostics -- Time Series Modelling -- Conclusions.
520 _aThis book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The empirical investigations detailed here demonstrate that PNN models evolved by genetic programming and improved by backpropagation are successful when solving real-world tasks. Adaptive Learning of Polynomial Networks is a vital reference for researchers and practitioners in the fields of evolutionary computation, artificial neural networks and Bayesian inference, and for advanced-level students of genetic programming. Readers will strengthen their skills in creating efficient model representations and learning operators that efficiently sample the search space, and in navigating the search process through the design of objective fitness functions.
650 0 _aCOMPUTER SCIENCE.
650 0 _aINFORMATION THEORY.
650 0 _aELECTRONIC DATA PROCESSING.
650 0 _aARTIFICIAL INTELLIGENCE.
650 1 4 _aCOMPUTER SCIENCE.
650 2 4 _aARTIFICIAL INTELLIGENCE (INCL. ROBOTICS).
650 2 4 _aCOMPUTING METHODOLOGIES.
650 2 4 _aTHEORY OF COMPUTATION.
700 1 _aIba, Hitoshi.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387312392
830 0 _aGenetic and Evolutionary Computation
856 4 0 _uhttp://dx.doi.org/10.1007/0-387-31240-4
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SCS
942 _2ddc
_cER
999 _c57127
_d57127