000 03239nam a22003975i 4500
001 978-0-387-69469-6
003 DE-He213
005 20250710084010.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 _a9780387694696
_a99780387694696
024 7 _a10.1007/978-0-387-69469-6
_2doi
082 0 4 _a530.1
_223
100 1 _aDas, Anadijiban.
_eeditor.
245 1 0 _aTensors
_h[recurso electrónico] :
_bThe Mathematics of Relativity Theory and Continuum Mechanics /
_cedited by Anadijiban Das.
264 1 _aNew York, NY :
_bSpringer New York,
_c2007.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aFinite- Dimensional Vector Spaces and Linear Mappings -- Fields -- Finite-Dimensional Vector Spaces -- Linear Mappings of a Vector Space -- Dual or Covariant Vector Space -- Tensor Algebra -- The Second Order Tensors -- Higher Order Tensors -- Exterior or Grassmann Algebra -- Inner Product Vector Spaces and the Metric Tensor -- Tensor Analysis on a Differentiable Manifold -- Differentiable Manifolds -- Vectors and Curves -- Tensor Fields over Differentiable Manifolds -- Differential Forms and Exterior Derivatives -- Differentiable Manifolds with Connections -- The Affine Connection and Covariant Derivative -- Covariant Derivatives of Tensors along a Curve -- Lie Bracket, Torsion, and Curvature Tensor -- Riemannian and Pseudo-Riemannian Manifolds -- Metric, Christoffel, Ricci Rotation -- Covariant Derivatives -- Curves, Frenet-Serret Formulas, and Geodesics -- Special Coordinate Charts -- Speical Riemannian and Pseudo-Riemannian Manifolds -- Flat Manifolds -- The Space of Constant Curvature -- Extrinsic Curvature.
520 _a Tensors: The Mathematics of Relativity Theory and Continuum Mechanics, by Anadijiban Das, emerged from courses taught over the years at the University College of Dublin, Carnegie-Mellon University and Simon Fraser University. This book will serve readers well as a modern introduction to the theories of tensor algebra and tensor analysis. Throughout Tensors, examples and worked-out problems are furnished from the theory of relativity and continuum mechanics. Topics covered in this book include, but are not limited to: -tensor algebra -differential manifold -tensor analysis -differential forms -connection forms -curvature tensors -Riemannian and pseudo-Riemannian manifolds The extensive presentation of the mathematical tools, examples and problems make the book a unique text for the pursuit of both the mathematical relativity theory and continuum mechanics.
650 0 _aPHYSICS.
650 0 _aMATHEMATICAL PHYSICS.
650 1 4 _aPHYSICS.
650 2 4 _aMATHEMATICAL AND COMPUTATIONAL PHYSICS.
650 2 4 _aMATHEMATICAL METHODS IN PHYSICS.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387694689
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-69469-6
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-PHA
942 _2ddc
_cER
999 _c58122
_d58122