| 000 | 03239nam a22003975i 4500 | ||
|---|---|---|---|
| 001 | 978-0-387-69469-6 | ||
| 003 | DE-He213 | ||
| 005 | 20250710084010.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 100301s2007 xxu| s |||| 0|eng d | ||
| 020 |
_a9780387694696 _a99780387694696 |
||
| 024 | 7 |
_a10.1007/978-0-387-69469-6 _2doi |
|
| 082 | 0 | 4 |
_a530.1 _223 |
| 100 | 1 |
_aDas, Anadijiban. _eeditor. |
|
| 245 | 1 | 0 |
_aTensors _h[recurso electrónico] : _bThe Mathematics of Relativity Theory and Continuum Mechanics / _cedited by Anadijiban Das. |
| 264 | 1 |
_aNew York, NY : _bSpringer New York, _c2007. |
|
| 300 | _bonline resource. | ||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_arecurso en línea _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | _aFinite- Dimensional Vector Spaces and Linear Mappings -- Fields -- Finite-Dimensional Vector Spaces -- Linear Mappings of a Vector Space -- Dual or Covariant Vector Space -- Tensor Algebra -- The Second Order Tensors -- Higher Order Tensors -- Exterior or Grassmann Algebra -- Inner Product Vector Spaces and the Metric Tensor -- Tensor Analysis on a Differentiable Manifold -- Differentiable Manifolds -- Vectors and Curves -- Tensor Fields over Differentiable Manifolds -- Differential Forms and Exterior Derivatives -- Differentiable Manifolds with Connections -- The Affine Connection and Covariant Derivative -- Covariant Derivatives of Tensors along a Curve -- Lie Bracket, Torsion, and Curvature Tensor -- Riemannian and Pseudo-Riemannian Manifolds -- Metric, Christoffel, Ricci Rotation -- Covariant Derivatives -- Curves, Frenet-Serret Formulas, and Geodesics -- Special Coordinate Charts -- Speical Riemannian and Pseudo-Riemannian Manifolds -- Flat Manifolds -- The Space of Constant Curvature -- Extrinsic Curvature. | |
| 520 | _a Tensors: The Mathematics of Relativity Theory and Continuum Mechanics, by Anadijiban Das, emerged from courses taught over the years at the University College of Dublin, Carnegie-Mellon University and Simon Fraser University. This book will serve readers well as a modern introduction to the theories of tensor algebra and tensor analysis. Throughout Tensors, examples and worked-out problems are furnished from the theory of relativity and continuum mechanics. Topics covered in this book include, but are not limited to: -tensor algebra -differential manifold -tensor analysis -differential forms -connection forms -curvature tensors -Riemannian and pseudo-Riemannian manifolds The extensive presentation of the mathematical tools, examples and problems make the book a unique text for the pursuit of both the mathematical relativity theory and continuum mechanics. | ||
| 650 | 0 | _aPHYSICS. | |
| 650 | 0 | _aMATHEMATICAL PHYSICS. | |
| 650 | 1 | 4 | _aPHYSICS. |
| 650 | 2 | 4 | _aMATHEMATICAL AND COMPUTATIONAL PHYSICS. |
| 650 | 2 | 4 | _aMATHEMATICAL METHODS IN PHYSICS. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9780387694689 |
| 856 | 4 | 0 |
_uhttp://dx.doi.org/10.1007/978-0-387-69469-6 _zVer el texto completo en las instalaciones del CICY |
| 912 | _aZDB-2-PHA | ||
| 942 |
_2ddc _cER |
||
| 999 |
_c58122 _d58122 |
||