000 03087nam a22004335i 4500
001 978-0-387-71564-3
003 DE-He213
005 20250710084013.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 _a9780387715643
_a99780387715643
024 7 _a10.1007/978-0-387-71564-3
_2doi
082 0 4 _a512.5
_223
100 1 _aVassilevski, Panayot S.
_eauthor.
245 1 0 _aMultilevel Block Factorization Preconditioners
_h[recurso electrónico] :
_bMatrix-based Analysis and Algorithms for Solving Finite Element Equations /
_cby Panayot S. Vassilevski.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _aXIV, 530p. 34 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aMotivation for Preconditioning -- A Finite Element Tutorial -- A Main Goal -- Block Factorization Preconditioners -- Two-by-Two Block Matrices and Their Factorization -- Classical Examples of Block-Factorizations -- Multigrid (MG) -- Topics on Algebraic Multigrid (AMG) -- Domain Decomposition (DD) Methods -- Preconditioning Nonsymmetric and Indefinite Matrices -- Preconditioning Saddle-Point Matrices -- Variable-Step Iterative Methods -- Preconditioning Nonlinear Problems -- Quadratic Constrained Minimization Problems.
520 _aThis monograph is the first to provide a comprehensive, self-contained and rigorous presentation of some of the most powerful preconditioning methods for solving finite element equations in a common block-matrix factorization framework. Topics covered include the classical incomplete block-factorization preconditioners and the most efficient methods such as the multigrid, algebraic multigrid, and domain decomposition. Additionally, the author discusses preconditioning of saddle-point, nonsymmetric and indefinite problems, as well as preconditioning of certain nonlinear and quadratic constrained minimization problems that typically arise in contact mechanics. The book presents analytical as well as algorithmic aspects. This text can serve as an indispensable reference for researchers, graduate students, and practitioners. It can also be used as a supplementary text for a topics course in preconditioning and/or multigrid methods at the graduate level.
650 0 _aMATHEMATICS.
650 0 _aMATRIX THEORY.
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 0 _aCOMPUTER SCIENCE
_xMATHEMATICS.
650 1 4 _aMATHEMATICS.
650 2 4 _aLINEAR AND MULTILINEAR ALGEBRAS, MATRIX THEORY.
650 2 4 _aPARTIAL DIFFERENTIAL EQUATIONS.
650 2 4 _aCOMPUTATIONAL MATHEMATICS AND NUMERICAL ANALYSIS.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387715636
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-71564-3
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c58255
_d58255