000 03823nam a22005415i 4500
001 978-0-387-75217-4
003 DE-He213
005 20250710084021.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 _a9780387752174
_a99780387752174
024 7 _a10.1007/978-0-387-75217-4
_2doi
082 0 4 _a515
_223
100 1 _aBardos, Claude.
_eeditor.
245 1 0 _aInstability in Models Connected with Fluid Flows I
_h[recurso electrónico] /
_cedited by Claude Bardos, Andrei Fursikov.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aInternational Mathematical Series,
_x1571-5485 ;
_v6
505 0 _aSolid Controllability in Fluid Dynamics -- Analyticity of Periodic Solutions of the 2D Boussinesq System -- Nonlinear Dynamics of a System of Particle-Like Wavepackets -- Attractors for Nonautonomous Navier-Stokes System and Other Partial Differential Equations -- Recent Results in Large Amplitude Monophase Nonlinear Geometric Optics -- Existence Theorems for the 3D-Navier-Stokes System Having as Initial Conditions Sums of Plane Waves -- Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains -- Increased Stability in the Cauchy Problem for Some Elliptic Equations.
520 _aInstability in Models Connected with Fluid Flows I presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large time asymptotics of solutions, stochastic equations, Euler equations, Navier-Stokes equations, and other PDEs of fluid mechanics. Fields covered include: controllability and accessibility properties of the Navier- Stokes and Euler systems, nonlinear dynamics of particle-like wavepackets, attractors of nonautonomous Navier-Stokes systems, large amplitude monophase nonlinear geometric optics, existence results for 3D Navier-Stokes equations and smoothness results for 2D Boussinesq equations, instability of incompressible Euler equations, increased stability in the Cauchy problem for elliptic equations. Contributors include: Andrey Agrachev (Italy-Russia) and Andrey Sarychev (Italy); Maxim Arnold (Russia); Anatoli Babin (USA) and Alexander Figotin (USA); Vladimir Chepyzhov (Russia) and Mark Vishik (Russia); Christophe Cheverry (France); Efim Dinaburg (Russia) and Yakov Sinai (USA-Russia); Francois Golse (France), Alex Mahalov (USA), and Basil Nicolaenko (USA); Victor Isakov (USA)
650 0 _aMATHEMATICS.
650 0 _aGLOBAL ANALYSIS (MATHEMATICS).
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 0 _aCOMPUTER SCIENCE
_xMATHEMATICS.
650 0 _aMATHEMATICAL OPTIMIZATION.
650 0 _aTHERMODYNAMICS.
650 0 _aMECHANICS, APPLIED.
650 1 4 _aMATHEMATICS.
650 2 4 _aANALYSIS.
650 2 4 _aCALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION.
650 2 4 _aCOMPUTATIONAL MATHEMATICS AND NUMERICAL ANALYSIS.
650 2 4 _aPARTIAL DIFFERENTIAL EQUATIONS.
650 2 4 _aTHEORETICAL AND APPLIED MECHANICS.
650 2 4 _aMECHANICS, FLUIDS, THERMODYNAMICS.
700 1 _aFursikov, Andrei.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387752167
830 0 _aInternational Mathematical Series,
_x1571-5485 ;
_v6
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-75217-4
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c58667
_d58667