000 03597nam a22005415i 4500
001 978-0-387-75219-8
003 DE-He213
005 20250710084021.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 _a9780387752198
_a99780387752198
024 7 _a10.1007/978-0-387-75219-8
_2doi
082 0 4 _a515
_223
100 1 _aBardos, Claude.
_eeditor.
245 1 0 _aInstability in Models Connected with Fluid Flows II
_h[recurso electrónico] /
_cedited by Claude Bardos, Andrei Fursikov.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aInternational Mathematical Series,
_x1571-5485 ;
_v7
505 0 _aJustifying Asymptotics for 3D Water-Waves -- Generalized Solutions of the Cauchy Problem for a Transport Equation with Discontinuous Coefficients -- Irreducible Chapman-Enskog Projections and Navier-Stokes Approximations -- Exponential Mixing for Randomly Forced Partial Differential Equations: Method of Coupling -- On Problem of Stability of Equilibrium Figures of Uniformly Rotating Viscous Incompressible Liquid -- Weak Spatially Nondecaying Solutions of 3D Navier-Stokes Equations in Cylindrical Domains -- On Global in Time Properties of the Symmetric Compressible Barotropic Navier-Stokes-Poisson Flows in a Vacuum.
520 _aInstability in Models Connected with Fluid Flows II presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large time asymptotics of solutions, stochastic equations, Euler equations, Navier-Stokes equations, and other PDEs of fluid mechanics. Fields covered include: the free surface Euler (or water-wave) equations, the Cauchy problem for transport equations, irreducible Chapman--Enskog projections and Navier-Stokes approximations, randomly forced PDEs, stability of equilibrium figures of uniformly rotating viscous incompressible liquid, Navier-Stokes equations in cylindrical domains, Navier-Stokes-Poisson flows in a vacuum. Contributors include: David Lannes (France); Evgenii Panov (Russia); Evgenii Radkevich (Russia); Armen Shirikyan (France); Vsevolod Solonnikov (Italy-Russia); Sergey Zelik (UK); Alexander Zlotnik (Russia)
650 0 _aMATHEMATICS.
650 0 _aGLOBAL ANALYSIS (MATHEMATICS).
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 0 _aCOMPUTER SCIENCE
_xMATHEMATICS.
650 0 _aMATHEMATICAL OPTIMIZATION.
650 0 _aTHERMODYNAMICS.
650 0 _aMECHANICS, APPLIED.
650 1 4 _aMATHEMATICS.
650 2 4 _aANALYSIS.
650 2 4 _aCALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION.
650 2 4 _aCOMPUTATIONAL MATHEMATICS AND NUMERICAL ANALYSIS.
650 2 4 _aPARTIAL DIFFERENTIAL EQUATIONS.
650 2 4 _aTHEORETICAL AND APPLIED MECHANICS.
650 2 4 _aMECHANICS, FLUIDS, THERMODYNAMICS.
700 1 _aFursikov, Andrei.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387752181
830 0 _aInternational Mathematical Series,
_x1571-5485 ;
_v7
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-75219-8
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c58668
_d58668