000 03419nam a22005175i 4500
001 978-0-387-75446-8
003 DE-He213
005 20250710084022.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 _a9780387754468
_a99780387754468
024 7 _a10.1007/978-0-387-75446-8
_2doi
082 0 4 _a519.6
_223
100 1 _aMishra, Shashi Kant.
_eauthor.
245 1 0 _aV-Invex Functions and Vector Optimization
_h[recurso electrónico] /
_cby Shashi Kant Mishra, Shouyang Wang, Kin Keung Lai.
264 1 _aBoston, MA :
_bSpringer US,
_c2008.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aOptimization and Its Applications,
_x1931-6828 ;
_v14
505 0 _aGeneral Introduction -- V-Invexity in Nonlinear Multiobjective Programming -- Multiobjective Fractional Programming -- Multiobjective Nonsmooth Programming -- Composite Multiobjective Nonsmooth Programming -- Continuous-time Programming.
520 _aV-INVEX FUNCTIONS AND VECTOR OPTIMIZATION summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past several decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990's. V-invex functions are areas in which there has been much interest because it allows researchers and practitioners to address and provide better solutions to problems that are nonlinear, multi-objective, fractional, and continuous in nature. Hence, V-invex functions have permitted work on a whole new class of vector optimization applications. There has been considerable work on vector optimization by some highly distinguished researchers including Kuhn, Tucker, Geoffrion, Mangasarian, Von Neuman, Schaiible, Ziemba, etc. The authors have integrated this related research into their book and demonstrate the wide context from which the area has grown and continues to grow. The result is a well-synthesized, accessible, and usable treatment for students, researchers, and practitioners in the areas of OR, optimization, applied mathematics, engineering, and their work relating to a wide range of problems which include financial institutions, logistics, transportation, traffic management, etc.
650 0 _aMATHEMATICS.
650 0 _aMATHEMATICAL OPTIMIZATION.
650 0 _aOPERATIONS RESEARCH.
650 0 _aTECHNOLOGY.
650 1 4 _aMATHEMATICS.
650 2 4 _aOPTIMIZATION.
650 2 4 _aCALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION.
650 2 4 _aOPERATIONS RESEARCH/DECISION THEORY.
650 2 4 _aOPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING.
650 2 4 _aTECHNOLOGY MANAGEMENT.
650 2 4 _aMATHEMATICAL MODELING AND INDUSTRIAL MATHEMATICS.
700 1 _aWang, Shouyang.
_eauthor.
700 1 _aLai, Kin Keung.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387754451
830 0 _aOptimization and Its Applications,
_x1931-6828 ;
_v14
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-75446-8
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c58682
_d58682