000 02381nam a22004215i 4500
001 978-0-387-84899-0
003 DE-He213
005 20251006084424.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 _a9780387848990
020 _a99780387848990
024 7 _a10.1007/978-0-387-84899-0
_2doi
100 1 _aPonce, Gustavo.
_eauthor.
245 1 0 _aIntroduction to Nonlinear Dispersive Equations
_h[electronic resource] /
_cby Gustavo Ponce, Felipe Linares.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUniversitext
505 0 _aThe Fourier Transform -- Interpolation of Operators. A Multiplier Theorem -- Sobolev Spaces and Pseudo-Differential Operators -- The Linear Schrodinger Equation -- The Nonlinear Schrodinger Equation. Local Theory -- Asymptotic Behavior for NLS Equation -- Korteweg-de Vries Equation -- Asymptotic Behavior for k-gKdV Equations -- Other Nonlinear Dispersive Models -- General Quasilinear Schrodinger Equation.
520 _aThe aim of this textbook is to introduce the theory of nonlinear dispersive equations to graduate students in a constructive way. The first three chapters are dedicated to preliminary material, such as Fourier transform, interpolation theory and Sobolev spaces. The authors then proceed to use the linear Schrodinger equation to describe properties enjoyed by general dispersive equations. This information is then used to treat local and global well-posedness for the semi-linear Schrodinger equations. The end of each chapter contains recent developments and open problems, as well as exercises.
650 0 _aMATHEMATICS.
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 1 4 _aMATHEMATICS.
650 2 4 _aPARTIAL DIFFERENTIAL EQUATIONS.
700 1 _aLinares, Felipe.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387848983
830 0 _aUniversitext
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-84899-0
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59245
_d59245