000 03643nam a22005175i 4500
001 978-0-387-85652-0
003 DE-He213
005 20251006084425.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 _a9780387856520
020 _a99780387856520
024 7 _a10.1007/978-0-387-85652-0
_2doi
082 0 4 _a515
_223
100 1 _aIsakov, Victor.
_eeditor.
245 1 0 _aSobolev Spaces in Mathematics III
_h[electronic resource] :
_bApplications in Mathematical Physics /
_cedited by Victor Isakov.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aInternational Mathematical Series,
_x1571-5485 ;
_v10
505 0 _aGeometrization of Rings as a Method for Solving Inverse Problems -- The Ginzburg-Landau Equations for Superconductivity with Random Fluctuations -- Carleman Estimates with Second Large Parameter for Second Order Operators -- Sharp Spectral Asymptotics for Dirac Energy -- Linear Hyperbolic and Petrowski Type PDEs with Continuous Boundary Control ? Boundary Observation Open Loop Map: Implication on Nonlinear Boundary Stabilization with Optimal Decay Rates -- Uniform Asymptotics of Green's Kernels for Mixed and Neumann Problems in Domains with Small Holes and Inclusions -- Finsler Structures and Wave Propagation.
520 _aThe mathematical works of S.L.Sobolev were strongly motivated by particular problems coming from applications. In his celebrated book Applications of Functional Analysis in Mathematical Physics, 1950 and other works, S.Sobolev introduced general methods that turned out to be very influential in the study of mathematical physics in the second half of the XXth century. This volume, dedicated to the centenary of S.L. Sobolev, presents the latest results on some important problems of mathematical physics describing, in particular, phenomena of superconductivity with random fluctuations, wave propagation, perforated domains and bodies with defects of different types, spectral asymptotics for Dirac energy, Lam\'e system with residual stress, optimal control problems for partial differential equations and inverse problems admitting numerous interpretations. Methods of modern functional analysis are essentially used in the investigation of these problems. Contributors include: Mikhail Belishev (Russia); Andrei Fursikov (Russia), Max Gunzburger (USA), and Janet Peterson (USA); Victor Isakov (USA) and Nanhee Kim (USA); Victor Ivrii (Canada); Irena Lasiecka (USA) and Roberto Triggiani (USA); Vladimir Maz'ya (USA-UK-Sweden) and Alexander Movchan (UK); Michael Taylor (USA)
650 0 _aMATHEMATICS.
650 0 _aGLOBAL ANALYSIS (MATHEMATICS).
650 0 _aFUNCTIONAL ANALYSIS.
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 0 _aNUMERICAL ANALYSIS.
650 0 _aMATHEMATICAL OPTIMIZATION.
650 1 4 _aMATHEMATICS.
650 2 4 _aANALYSIS.
650 2 4 _aPARTIAL DIFFERENTIAL EQUATIONS.
650 2 4 _aFUNCTIONAL ANALYSIS.
650 2 4 _aOPTIMIZATION.
650 2 4 _aNUMERICAL ANALYSIS.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387856513
830 0 _aInternational Mathematical Series,
_x1571-5485 ;
_v10
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-85652-0
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59284
_d59284