000 03524nam a22005055i 4500
001 978-0-8176-4417-8
003 DE-He213
005 20251006084434.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 _a9780817644178
020 _a99780817644178
024 7 _a10.1007/b138649
_2doi
082 0 4 _a512
_223
100 1 _aBogomolov, Fedor.
_eeditor.
245 1 0 _aGeometric Methods in Algebra and Number Theory
_h[electronic resource] /
_cedited by Fedor Bogomolov, Yuri Tschinkel.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2005.
300 _aVIII, 362 p. 6 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics ;
_v235
505 0 _aFrom the contents: Preface -- Bauer/Catanese/Grunewald: Beauville surfaces without real structures -- Bogomolov/Tschinkel: Couniformization of curves over number fields -- Budur: On the V-filtration of D-modules -- Chai: Hecke orbits on Siegel modular varieties -- Cluckers/Loeser: Ax-Kochen-Eršov Theorems for p-adic integrals and motivic integration -- De Concini/Procesi: Nested sets and Jeffrey-Kirwan residues -- Ellenberg/Venkatesh: Counting extensions of function fields with bounded discriminant and specified Galois group -- Hassett: Classical and minimal models of the moduli space of curves of genus two -- Hausel: Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve -- Pineiro/Szpiro/Tucker: Mahler measure for dynamical systems on P1 and intersection theory on a singular arithmetic surface -- Pink: A Combination of the Conjecture of Mordell-Lang and André-Oort -- Spitzweck: Motivic approach to limit sheaves.
520 _aThe transparency and power of geometric constructions has been a source of inspiration to generations of mathematicians. The beauty and persuasion of pictures, communicated in words or drawings, continues to provide the intuition and arguments for working with complicated concepts and structures of modern mathematics. This volume contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory. Key topics include: - Curves and their Jacobians - Algebraic surfaceModuli spaces, Shimura varieties - Motives and motivic integration - Number-theoretic applications, rational points - Combinatorial aspects of algebraic geometry - Quantum cohomology - Arithmetic dynamical systems The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry; the text can serve as an intense introduction for graduate students and those wishing to pursue research in these areas.
650 0 _aMATHEMATICS.
650 0 _aALGEBRA.
650 0 _aGEOMETRY, ALGEBRAIC.
650 0 _aGEOMETRY.
650 0 _aNUMBER THEORY.
650 1 4 _aMATHEMATICS.
650 2 4 _aALGEBRA.
650 2 4 _aALGEBRAIC GEOMETRY.
650 2 4 _aNUMBER THEORY.
650 2 4 _aGEOMETRY.
700 1 _aTschinkel, Yuri.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817643492
830 0 _aProgress in Mathematics ;
_v235
856 4 0 _uhttp://dx.doi.org/10.1007/b138649
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59618
_d59618