000 03300nam a22005295i 4500
001 978-0-8176-4436-9
003 DE-He213
005 20251006084434.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 _a9780817644369
020 _a99780817644369
024 7 _a10.1007/0-8176-4436-9
_2doi
082 0 4 _a515.353
_223
100 1 _aSuzuki, Takashi.
_eeditor.
245 1 0 _aFree Energy and Self-Interacting Particles
_h[electronic resource] /
_cedited by Takashi Suzuki.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2005.
300 _aXIII, 366 p. 7 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v62
505 0 _aSummary -- Background -- Fundamental Theorem -- Trudinger-Moser Inequality -- The Green's Function -- Equilibrium States -- Blowup Analysis for Stationary Solutions -- Multiple Existence -- Dynamical Equivalence -- Formation of Collapses -- Finiteness of Blowup Points -- Concentration Lemma -- Weak Solution -- Hyperparabolicity -- Quantized Blowup Mechanism -- Theory of Dual Variation.
520 _aThis book examines a nonlinear system of parabolic partial differential equations (PDEs) arising in mathematical biology and statistical mechanics. In the context of biology, the system typically describes the chemotactic feature of cellular slime molds. One way of deriving these equations is via the random motion of a particle in a cellular automaton. In statistical mechanics the system is associated with the motion of the mean field of self-interacting particles under gravitational force. Physically, such a system is related to Langevin, Fokker-Planck, Liouville and gradient flow equations. Mathematically, the mechanism can be referred to as a quantized blowup. This book describes the whole picture, i.e., the mathematical and physical principles: derivation of a series of equations, biological modeling based on biased random walks, the study of equilibrium states via the variational structure derived from the free energy, and the quantized blowup mechanism based on several PDE techniques.
650 0 _aMATHEMATICS.
650 0 _aCHEMISTRY
_xMATHEMATICS.
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 0 _aBIOLOGY
_xMATHEMATICS.
650 0 _aMATHEMATICAL PHYSICS.
650 0 _aENGINEERING MATHEMATICS.
650 1 4 _aMATHEMATICS.
650 2 4 _aPARTIAL DIFFERENTIAL EQUATIONS.
650 2 4 _aAPPLICATIONS OF MATHEMATICS.
650 2 4 _aMATHEMATICAL METHODS IN PHYSICS.
650 2 4 _aMATHEMATICAL BIOLOGY IN GENERAL.
650 2 4 _aAPPL.MATHEMATICS/COMPUTATIONAL METHODS OF ENGINEERING.
650 2 4 _aMATH. APPLICATIONS IN CHEMISTRY.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817643027
830 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v62
856 4 0 _uhttp://dx.doi.org/10.1007/0-8176-4436-9
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59635
_d59635