000 04845nam a22005175i 4500
001 978-0-8176-4448-2
003 DE-He213
005 20251006084434.0
007 cr nn 008mamaa
008 121116s2005 xxu| s |||| 0|eng d
020 _a9780817644482
020 _a99780817644482
024 7 _a10.1007/978-0-8176-4448-2
_2doi
082 0 4 _a511.4
_223
100 1 _aChristensen, Ole.
_eauthor.
245 1 0 _aApproximation Theory
_h[electronic resource] :
_bFrom Taylor Polynomials to Wavelets /
_cby Ole Christensen, Khadija L. Christensen.
264 1 _aBoston, MA :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2005.
300 _aXI, 156 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aApplied and Numerical Harmonic Analysis
505 0 _a1 Approximation with Polynomials -- 1.1 Approximation of a function on an interval -- 1.2 Weierstrass' theorem -- 1.3 Taylor's theorem -- 1.4 Exercises -- 2 Infinite Series -- 2.1 Infinite series of numbers -- 2.2 Estimating the sum of an infinite series -- 2.3 Geometric series -- 2.4 Power series -- 2.5 General infinite sums of functions -- 2.6 Uniform convergence -- 2.7 Signal transmission -- 2.8 Exercises -- 3 Fourier Analysis -- 3.1 Fourier series -- 3.2 Fourier's theorem and approximation -- 3.3 Fourier series and signal analysis -- 3.4 Fourier series and Hilbert spaces -- 3.5 Fourier series in complex form -- 3.6 Parseval's theorem -- 3.7 Regularity and decay of the Fourier coefficients -- 3.8 Best N-term approximation -- 3.9 The Fourier transform -- 3.10 Exercises -- 4 Wavelets and Applications -- 4.1 About wavelet systems -- 4.2 Wavelets and signal processing -- 4.3 Wavelets and fingerprints -- 4.4 Wavelet packets -- 4.5 Alternatives to wavelets: Gabor systems -- 4.6 Exercises -- 5 Wavelets and their Mathematical Properties -- 5.1 Wavelets and L2 (?) -- 5.2 Multiresolution analysis -- 5.3 The role of the Fourier transform -- 5.4 The Haar wavelet -- 5.5 The role of compact support -- 5.6 Wavelets and singularities -- 5.7 Best N-term approximation -- 5.8 Frames -- 5.9 Gabor systems -- 5.10 Exercises -- Appendix A -- A.1 Definitions and notation -- A.2 Proof of Weierstrass' theorem -- A.3 Proof of Taylor's theorem -- A.4 Infinite series -- A.5 Proof of Theorem 3 7 2 -- Appendix B -- B.1 Power series -- B.2 Fourier series for 2?-periodic functions -- List of Symbols -- References.
520 _aThis concisely written book gives an elementary introduction to a classical area of mathematics-approximation theory-in a way that naturally leads to the modern field of wavelets. The exposition, driven by ideas rather than technical details and proofs, demonstrates the dynamic nature of mathematics and the influence of classical disciplines on many areas of modern mathematics and applications. Key features and topics: * Description of wavelets in words rather than mathematical symbols * Elementary introduction to approximation using polynomials (Weierstrass' and Taylor's theorems) * Introduction to infinite series, with emphasis on approximation-theoretic aspects * Introduction to Fourier analysis * Numerous classical, illustrative examples and constructions * Discussion of the role of wavelets in digital signal processing and data compression, such as the FBI's use of wavelets to store fingerprints * Minimal prerequisites: elementary calculus * Exercises that may be used in undergraduate and graduate courses on infinite series and Fourier series Approximation Theory: From Taylor Polynomials to Wavelets will be an excellent textbook or self-study reference for students and instructors in pure and applied mathematics, mathematical physics, and engineering. Readers will find motivation and background material pointing toward advanced literature and research topics in pure and applied harmonic analysis and related areas.
650 0 _aMATHEMATICS.
650 0 _aHARMONIC ANALYSIS.
650 0 _aFOURIER ANALYSIS.
650 0 _aFUNCTIONAL ANALYSIS.
650 1 4 _aMATHEMATICS.
650 2 4 _aAPPROXIMATIONS AND EXPANSIONS.
650 2 4 _aABSTRACT HARMONIC ANALYSIS.
650 2 4 _aFOURIER ANALYSIS.
650 2 4 _aFUNCTIONAL ANALYSIS.
650 2 4 _aAPPLICATIONS OF MATHEMATICS.
650 2 4 _aSIGNAL, IMAGE AND SPEECH PROCESSING.
700 1 _aChristensen, Khadija L.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817636005
830 0 _aApplied and Numerical Harmonic Analysis
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-4448-2
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59644
_d59644