| 000 | 03295nam a22005295i 4500 | ||
|---|---|---|---|
| 001 | 978-0-8176-4523-6 | ||
| 003 | DE-He213 | ||
| 005 | 20251006084435.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 100301s2008 xxu| s |||| 0|eng d | ||
| 020 | _a9780817645236 | ||
| 020 | _a99780817645236 | ||
| 024 | 7 |
_a10.1007/978-0-8176-4523-6 _2doi |
|
| 082 | 0 | 4 |
_a512 _223 |
| 100 | 1 |
_aHotta, Ryoshi. _eeditor. |
|
| 245 | 1 | 0 |
_aD-Modules, Perverse Sheaves, and Representation Theory _h[electronic resource] / _cedited by Ryoshi Hotta, Kiyoshi Takeuchi, Toshiyuki Tanisaki. |
| 264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2008. |
|
| 300 |
_aXI, 412 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aProgress in Mathematics ; _v236 |
|
| 505 | 0 | _aD-Modules and Perverse Sheaves -- Preliminary Notions -- Coherent D-Modules -- Holonomic D-Modules -- Analytic D-Modules and the de Rham Functor -- Theory of Meromorphic Connections -- Regular Holonomic D-Modules -- Riemann-Hilbert Correspondence -- Perverse Sheaves -- Representation Theory -- Algebraic Groups and Lie Algebras -- Conjugacy Classes of Semisimple Lie Algebras -- Representations of Lie Algebras and D-Modules -- Character Formula of HighestWeight Modules -- Hecke Algebras and Hodge Modules. | |
| 520 | _aD-modules continues to be an active area of stimulating research in such mathematical areas as algebra, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, and representation theory. | ||
| 650 | 0 | _aMATHEMATICS. | |
| 650 | 0 | _aALGEBRA. | |
| 650 | 0 | _aGEOMETRY, ALGEBRAIC. | |
| 650 | 0 | _aGROUP THEORY. | |
| 650 | 0 | _aTOPOLOGICAL GROUPS. | |
| 650 | 1 | 4 | _aMATHEMATICS. |
| 650 | 2 | 4 | _aALGEBRA. |
| 650 | 2 | 4 | _aGROUP THEORY AND GENERALIZATIONS. |
| 650 | 2 | 4 | _aTOPOLOGICAL GROUPS, LIE GROUPS. |
| 650 | 2 | 4 | _aCOMMUTATIVE RINGS AND ALGEBRAS. |
| 650 | 2 | 4 | _aALGEBRAIC GEOMETRY. |
| 700 | 1 |
_aTakeuchi, Kiyoshi. _eeditor. |
|
| 700 | 1 |
_aTanisaki, Toshiyuki. _eeditor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9780817643638 |
| 830 | 0 |
_aProgress in Mathematics ; _v236 |
|
| 856 | 4 | 0 |
_uhttp://dx.doi.org/10.1007/978-0-8176-4523-6 _zVer el texto completo en las instalaciones del CICY |
| 912 | _aZDB-2-SMA | ||
| 942 |
_2ddc _cER |
||
| 999 |
_c59683 _d59683 |
||