000 03377nam a22005295i 4500
001 978-0-8176-4669-1
003 DE-He213
005 20251006084438.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 _a9780817646691
020 _a99780817646691
024 7 _a10.1007/978-0-8176-4669-1
_2doi
082 0 4 _a515.785
_223
100 1 _aKrantz, Steven G.
_eauthor.
245 1 0 _aExplorations in Harmonic Analysis
_h[electronic resource] :
_bwith Applications to Complex Function Theory and the Heisenberg Group /
_cby Steven G. Krantz.
250 _a1.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2009.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aApplied and Numerical Harmonic Analysis
505 0 _aOntology and History of Real Analysis -- The Central Idea: The Hilbert Transform -- Essentials of the Fourier Transform -- Fractional and Singular Integrals -- A Crash Course in Several Complex Variables -- Pseudoconvexity and Domains of Holomorphy -- Canonical Complex Integral Operators -- Hardy Spaces Old and New -- to the Heisenberg Group -- Analysis on the Heisenberg Group -- A Coda on Domains of Finite Type.
520 _aThis self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis. Within the textbook, the new ideas on the Heisenberg group are applied to the study of estimates for both the Szegö and Poisson-Szegö integrals on the unit ball in complex space. Thus the main theme of the book is also tied into complex analysis of several variables. With a rigorous but well-paced exposition, this text provides all the necessary background in singular and fractional integrals, as well as Hardy spaces and the function theory of several complex variables, needed to understand Heisenberg analysis. Explorations in Harmonic Analysis is ideal for graduate students in mathematics, physics, and engineering. Prerequisites include a fundamental background in real and complex analysis and some exposure to functional analysis.
650 0 _aMATHEMATICS.
650 0 _aGROUP THEORY.
650 0 _aHARMONIC ANALYSIS.
650 0 _aFOURIER ANALYSIS.
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 1 4 _aMATHEMATICS.
650 2 4 _aABSTRACT HARMONIC ANALYSIS.
650 2 4 _aAPPROXIMATIONS AND EXPANSIONS.
650 2 4 _aSEVERAL COMPLEX VARIABLES AND ANALYTIC SPACES.
650 2 4 _aFOURIER ANALYSIS.
650 2 4 _aGROUP THEORY AND GENERALIZATIONS.
650 2 4 _aPARTIAL DIFFERENTIAL EQUATIONS.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817646684
830 0 _aApplied and Numerical Harmonic Analysis
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-4669-1
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59751
_d59751