000 03795nam a22006015i 4500
001 978-0-8176-4697-4
003 DE-He213
005 20251006084438.0
007 cr nn 008mamaa
008 101125s2010 xxu| s |||| 0|eng d
020 _a9780817646974
020 _a99780817646974
024 7 _a10.1007/978-0-8176-4697-4
_2doi
082 0 4 _a512.2
_223
100 1 _aGyoja, Akihiko.
_eeditor.
245 1 0 _aRepresentation Theory of Algebraic Groups and Quantum Groups
_h[electronic resource] /
_cedited by Akihiko Gyoja, Hiraku Nakajima, Ken-ichi Shinoda, Toshiaki Shoji, Toshiyuki Tanisaki.
250 _a1.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2010.
300 _aXIII, 348p. 10 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics ;
_v284
505 0 _aQuotient Categories of Modular Representations -- Dipper-James-Murphy's Conjecture for Hecke Algebras of Type Bn -- On Domino Insertion and Kazhdan-Lusztig Cells in Type Bn -- Runner Removal Morita Equivalences -- Quantum q-Schur Algebras and Their Infinite/Infinitesimal Counterparts -- Cherednik Algebras for Algebraic Curves -- A Temperley-Lieb Analogue for the BMW Algebra -- Graded Lie Algebras and Intersection Cohomology -- Crystal Base Elements of an ExtremalWeight Module Fixed by a Diagram Automorphism II: Case of Affine Lie Algebras -- t-Analogs of q-Characters of Quantum Affine Algebras of Type E6, E7, E8 -- Ultra-Discretization of the affine G_2 Geometric Crystals to Perfect Crystals -- On Hecke Algebras Associated with Elliptic Root Systems -- Green's Formula with ?*-Action and Caldero-Keller's Formula for Cluster Algebras.
520 _aThis volume contains invited articles by top-notch experts who focus on such topics as: modular representations of algebraic groups, representations of quantum groups and crystal bases, representations of affine Lie algebras, representations of affine Hecke algebras, modular or ordinary representations of finite reductive groups, and representations of complex reflection groups and associated Hecke algebras. Representation Theory of Algebraic Groups and Quantum Groups is intended for graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics. Contributors: H. H. Andersen, S. Ariki, C. Bonnafé, J. Chuang, J. Du, M. Finkelberg, Q. Fu, M. Geck, V. Ginzburg, A. Hida, L. Iancu, N. Jacon, T. Lam, G.I. Lehrer, G. Lusztig, H. Miyachi, S. Naito, H. Nakajima, T. Nakashima, D. Sagaki, Y. Saito, M. Shiota, J. Xiao, F. Xu, R. B. Zhang
650 0 _aMATHEMATICS.
650 0 _aGEOMETRY, ALGEBRAIC.
650 0 _aGROUP THEORY.
650 0 _aALGEBRA.
650 0 _aTOPOLOGICAL GROUPS.
650 0 _aNUMBER THEORY.
650 0 _aMATHEMATICAL PHYSICS.
650 1 4 _aMATHEMATICS.
650 2 4 _aGROUP THEORY AND GENERALIZATIONS.
650 2 4 _aALGEBRAIC GEOMETRY.
650 2 4 _aTOPOLOGICAL GROUPS, LIE GROUPS.
650 2 4 _aNON-ASSOCIATIVE RINGS AND ALGEBRAS.
650 2 4 _aNUMBER THEORY.
650 2 4 _aMATHEMATICAL METHODS IN PHYSICS.
700 1 _aNakajima, Hiraku.
_eeditor.
700 1 _aShinoda, Ken-ichi.
_eeditor.
700 1 _aShoji, Toshiaki.
_eeditor.
700 1 _aTanisaki, Toshiyuki.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817646967
830 0 _aProgress in Mathematics ;
_v284
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-4697-4
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59762
_d59762