000 03674nam a22005295i 4500
001 978-0-8176-8247-7
003 DE-He213
005 20251006084440.0
007 cr nn 008mamaa
008 110727s2011 xxu| s |||| 0|eng d
020 _a9780817682477
020 _a99780817682477
024 7 _a10.1007/978-0-8176-8247-7
_2doi
082 0 4 _a514.74
_223
100 1 _aDuistermaat, J. J.
_eauthor.
245 1 4 _aThe Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator
_h[electronic resource] /
_cby J. J. Duistermaat.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2011.
300 _aVIII, 247p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aModern Birkhäuser Classics
505 0 _a1 Introduction -- 2 The Dolbeault-Dirac Operator -- 3 Clifford Modules -- 4 The Spin Group and the Spin-c Group -- 5 The Spin-c Dirac Operator -- 6 Its Square -- 7 The Heat Kernel Method -- 8 The Heat Kernel Expansion -- 9 The Heat Kernel on a Principal Bundle -- 10 The Automorphism -- 11 The Hirzebruch-Riemann-Roch Integrand -- 12 The Local Lefschetz Fixed Point Formula -- 13 Characteristic Case -- 14 The Orbifold Version -- 15 Application to Symplectic Geometry -- 16 Appendix: Equivariant Forms.
520 _aInterest in the spin-c Dirac operator originally came about from the study of complex analytic manifolds, where in the non-Kähler case the Dolbeault operator is no longer suitable for getting local formulas for the Riemann-Roch number or the holomorphic Lefschetz number. However, every symplectic manifold (phase space in classical mechanics) also carries an almost complex structure and hence a corresponding spin-c Dirac operator. Using the heat kernels theory of Berline, Getzler, and Vergne, this work revisits some fundamental concepts of the theory, and presents the application to symplectic geometry. J.J. Duistermaat was well known for his beautiful and concise expositions of seemingly familiar concepts, and this classic study is certainly no exception. Reprinted as it was originally published, this work is as an affordable text that will be of interest to a range of researchers in geometric analysis and mathematical physics. Overall this is a carefully written, highly readable book on a very beautiful subject. -Mathematical Reviews The book of J.J. Duistermaat is a nice introduction to analysis related [to the] spin-c Dirac operator. ... The book is almost self contained, [is] readable, and will be useful for anybody who is interested in the topic. -EMS Newsletter The author's book is a marvelous introduction to [these] objects and theories. -Zentralblatt MATH
650 0 _aMATHEMATICS.
650 0 _aGLOBAL ANALYSIS (MATHEMATICS).
650 0 _aGLOBAL ANALYSIS.
650 0 _aOPERATOR THEORY.
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 0 _aGLOBAL DIFFERENTIAL GEOMETRY.
650 1 4 _aMATHEMATICS.
650 2 4 _aGLOBAL ANALYSIS AND ANALYSIS ON MANIFOLDS.
650 2 4 _aPARTIAL DIFFERENTIAL EQUATIONS.
650 2 4 _aDIFFERENTIAL GEOMETRY.
650 2 4 _aANALYSIS.
650 2 4 _aOPERATOR THEORY.
650 2 4 _aMATHEMATICAL PHYSICS.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817682460
830 0 _aModern Birkhäuser Classics
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-8247-7
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59860
_d59860