000 03356nam a22004455i 4500
001 978-0-8176-8328-3
003 DE-He213
005 20251006084441.0
007 cr nn 008mamaa
008 120531s2012 xxu| s |||| 0|eng d
020 _a9780817683283
020 _a99780817683283
024 7 _a10.1007/978-0-8176-8328-3
_2doi
082 0 4 _a515.724
_223
100 1 _aKubrusly, Carlos S.
_eauthor.
245 1 0 _aSpectral Theory of Operators on Hilbert Spaces
_h[electronic resource] /
_cby Carlos S. Kubrusly.
264 1 _aBoston :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2012.
300 _aX, 197 p. 2 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPreface -- Preliminaries -- Spectrum -- Spectral Theorem -- Functional Calculus -- Fredholm Theory -- References -- Index.
520 _aThis work is intended to provide a concise introduction to the spectral theory of Hilbert space operators. With an emphasis on detailed proofs and recent aspects of theory, it can serve as a modern textbook for a first graduate course in the subject. The coverage of topics is thorough, exploring various intricate points and hidden features often left untreated. The book begins with a primer on Hilbert space theory, summarizing the basics required for the remainder of the book and establishing unified notation and terminology. After this, standard spectral results for (bounded linear) operators on Banach and Hilbert spaces, including the classical partition of the spectrum and spectral properties for specific classes of operators, are discussed. A study of the spectral theorem for normal operators follows, covering both the compact and the general case, and proving both versions of the theorem in full detail. This leads into an investigation of functional calculus for normal operators and Riesz functional calculus, which in turn is followed by Fredholm theory and compact perturbations of the spectrum, where a finer analysis of the spectrum is worked out. Here, further partitions involving the essential spectrum, including the Weyl and Browder spectra, are introduced. The final section of the book deals with Weyl's and Browder's theorems and provides a look at very recent results.  Spectral Theory of Operators on Hilbert Spaces is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will be useful for working mathematicians using spectral theory of Hilbert space operators, as well as for scientists wishing to harness the applications of this theory.
650 0 _aMATHEMATICS.
650 0 _aALGEBRA.
650 0 _aFUNCTIONAL ANALYSIS.
650 0 _aOPERATOR THEORY.
650 1 4 _aMATHEMATICS.
650 2 4 _aOPERATOR THEORY.
650 2 4 _aFUNCTIONAL ANALYSIS.
650 2 4 _aNON-ASSOCIATIVE RINGS AND ALGEBRAS.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817683276
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-8328-3
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59887
_d59887