000 03681nam a22005415i 4500
001 978-0-8176-8334-4
003 DE-He213
005 20251006084441.0
007 cr nn 008mamaa
008 120707s2012 xxu| s |||| 0|eng d
020 _a9780817683344
020 _a99780817683344
024 7 _a10.1007/978-0-8176-8334-4
_2doi
082 0 4 _a512.7
_223
100 1 _aBump, Daniel.
_eeditor.
245 1 0 _aMultiple Dirichlet Series, L-functions and Automorphic Forms
_h[electronic resource] /
_cedited by Daniel Bump, Solomon Friedberg, Dorian Goldfeld.
264 1 _aBoston, MA :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2012.
300 _aVIII, 361 p. 78 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics ;
_v300
505 0 _aPreface -- Introduction: Multiple Dirichlet Series -- A Crystal Description for Symplectic Multiple Dirichlet Series -- Metaplectic Whittaker Functions and Crystals of Type B -- Metaplectic Ice -- Littelmann patterns and Weyl Group Multiple Dirichlet Series of Type D -- Toroidal Automorphic Forms, Waldspurger Periods and Double Dirichlet Series -- Natural Boundaries and Integral Moments of L-functions.-  A Trace Formula of Special Values of Automorphic L-functions -- The Adjoint L-function of SU(2,1) -- Symplectic Ice -- On Witten Multiple Zeta-Functions Associated with Semisimple Lie Algebras III -- A Pseudo Twin-Prime Theorem -- Principal Series Representations of Metaplectic Groups over Local Fields -- Two-Dimensional Adelic Analysis and Cuspidal Automorphic Representations of GL(2).
520 _aMultiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics.  As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together.  The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics.  This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura.
650 0 _aMATHEMATICS.
650 0 _aGROUP THEORY.
650 0 _aFUNCTIONS, SPECIAL.
650 0 _aCOMBINATORICS.
650 0 _aNUMBER THEORY.
650 1 4 _aMATHEMATICS.
650 2 4 _aNUMBER THEORY.
650 2 4 _aGROUP THEORY AND GENERALIZATIONS.
650 2 4 _aMATHEMATICAL PHYSICS.
650 2 4 _aCOMBINATORICS.
650 2 4 _aSPECIAL FUNCTIONS.
650 2 4 _aQUANTUM FIELD THEORIES, STRING THEORY.
700 1 _aFriedberg, Solomon.
_eeditor.
700 1 _aGoldfeld, Dorian.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817683337
830 0 _aProgress in Mathematics ;
_v300
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-8334-4
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59888
_d59888