000 03939nam a22004575i 4500
001 978-0-85729-115-8
003 DE-He213
005 20251006084442.0
007 cr nn 008mamaa
008 110201s2011 xxk| s |||| 0|eng d
020 _a9780857291158
020 _a99780857291158
024 7 _a10.1007/978-0-85729-115-8
_2doi
082 0 4 _a510.9
_223
100 1 _aBacaër, Nicolas.
_eauthor.
245 1 2 _aA Short History of Mathematical Population Dynamics
_h[electronic resource] /
_cby Nicolas Bacaër.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _aX, 158p. 60 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aThe Fibonacci sequence (1202) -- Halley's life table (1693) -- Euler and the geometric growth of populations (1748-1761) -- Daniel Bernoulli, d'Alembert and the inoculation of smallpox (1760) -- Malthus and the obstacles to geometric growth (1798) -- Verhulst and the logistic equation (1838) -- Bienaymé, Cournot and the extinction of family names (1845-1847) -- Mendel and heredity (1865) -- Galton, Watson and the extinction problem (1873-1875) -- Lotka and stable population theory (1907-1911) -- The Hardy-Weinberg law (1908) -- Ross and malaria (1911) -- Lotka, Volterra and the predator-prey system (1920-1926) -- Fisher and natural selection (1922) -- Yule and evolution (1924) -- McKendrick and Kermack on epidemic modelling (1926-1927) -- Haldane and mutations (1927) -- Erlang and Steffensen on the extinction problem (1929-1933) -- Wright and random genetic drift (1931) -- The diffusion of genes (1937) -- 21 The Leslie matrix (1945) -- 22 Percolation and epidemics (1957) -- 23 Game theory and evolution (1973) -- 24 Chaotic populations (1974) -- 25 China's one-child policy (1980) -- 26 Some contemporary problems.
520 _a<p>As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers.</p> <p>This book traces the history of population dynamics---a theoretical subject closely connected to  genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to  percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine.</p> <p>The reader of this book will see, from a different perspective, the problems that scientists face when  governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.</p>
650 0 _aMATHEMATICS.
650 0 _aGENETICS
_xMATHEMATICS.
650 0 _aBIOLOGY
_xMATHEMATICS.
650 0 _aMATHEMATICS_{DOLLAR}XHISTORY.
650 1 4 _aMATHEMATICS.
650 2 4 _aHISTORY OF MATHEMATICS.
650 2 4 _aGENETICS AND POPULATION DYNAMICS.
650 2 4 _aMATHEMATICAL BIOLOGY IN GENERAL.
650 2 4 _aPOPULAR SCIENCE IN MATHEMATICS/COMPUTER SCIENCE/NATURAL SCIENCE/TECHNOLOGY.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780857291141
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-85729-115-8
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c59949
_d59949