000 02756nam a22005175i 4500
001 978-1-4020-2133-6
003 DE-He213
005 20251006084448.0
007 cr nn 008mamaa
008 100301s2005 ne | s |||| 0|eng d
020 _a9781402021336
020 _a99781402021336
024 7 _a10.1007/1-4020-2133-X
_2doi
082 0 4 _a515
_223
100 1 _aXu, Yichao.
_eauthor.
245 1 0 _aTheory of Complex Homogeneous Bounded Domains
_h[electronic resource] /
_cby Yichao Xu.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2005.
300 _aX, 427 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aMathematics and Its Applications ;
_v569
505 0 _a1. Siegel Domains and sub chapters -- 2. Homogeneous Siegel Domains and sub chapters -- 3. Normal Siegel Domains and sub chapters -- 4. Other Realizations and sub chapters -- 5. Automorphism Group and sub chapters -- 6. Classification of Square Domains and sub chapters -- 7. Symmetric Bounded Domains and sub chapters -- 8. Szegö Kernel and Poisson Kernel and sub chapters -- 9. Homogeneous Bounded Domains and sub chapters -- References. Index.
520 _aTheory of Complex Homogeneous Bounded Domains studies the classification and function theory of complex homogeneous bounded domains systematically for the first time. In the book, the Siegel domains are discussed in detail. Proofs are given for 1: every homogeneous bounded domain is holomorphically isomorphic to a homogeneous Siegel domain, and 2: every homogeneous Siegel domain is affine isomorphic to a normal Siegel domain. Using the normal Siegel domains to realize the homogeneous bounded domains, we can obtain more property of the geometry and the function theory on homogeneous bounded domains.
650 0 _aMATHEMATICS.
650 0 _aALGEBRA.
650 0 _aTOPOLOGICAL GROUPS.
650 0 _aGLOBAL ANALYSIS (MATHEMATICS).
650 0 _aGLOBAL ANALYSIS.
650 0 _aGLOBAL DIFFERENTIAL GEOMETRY.
650 1 4 _aMATHEMATICS.
650 2 4 _aANALYSIS.
650 2 4 _aNON-ASSOCIATIVE RINGS AND ALGEBRAS.
650 2 4 _aTOPOLOGICAL GROUPS, LIE GROUPS.
650 2 4 _aGLOBAL ANALYSIS AND ANALYSIS ON MANIFOLDS.
650 2 4 _aDIFFERENTIAL GEOMETRY.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781402021329
830 0 _aMathematics and Its Applications ;
_v569
856 4 0 _uhttp://dx.doi.org/10.1007/1-4020-2133-X
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c60200
_d60200