000 03123nam a22005295i 4500
001 978-1-4020-4175-4
003 DE-He213
005 20251006084505.0
007 cr nn 008mamaa
008 100301s2006 ne | s |||| 0|eng d
020 _a9781402041754
020 _a99781402041754
024 7 _a10.1007/978-1-4020-4175-4
_2doi
082 0 4 _a511.4
_223
100 1 _aJakimovski, Amnon.
_eauthor.
245 1 0 _aWalsh Equiconvergence of Complex Interpolating Polynomials
_h[electronic resource] /
_cby Amnon Jakimovski, Ambikeshwar Sharma, József Szabados.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2006.
300 _aXIII, 296 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Monographs in Mathematics,
_x1439-7382
505 0 _aLagrange Interpolation and Walsh Equiconvergence -- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence -- A Generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence -- Sharpness Results -- Converse Results -- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with ?-Poles -- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions -- Equiconvergence for Functions Analytic in an Ellipse -- Walsh Equiconvergence Theorems for the Faber Series -- Equiconvergence on Lemniscates -- Walsh Equiconvergence and Equisummability.
520 _aThis book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.
650 0 _aMATHEMATICS.
650 0 _aGLOBAL ANALYSIS (MATHEMATICS).
650 0 _aFUNCTIONS OF COMPLEX VARIABLES.
650 0 _aSEQUENCES (MATHEMATICS).
650 0 _aDIFFERENTIAL EQUATIONS, PARTIAL.
650 1 4 _aMATHEMATICS.
650 2 4 _aAPPROXIMATIONS AND EXPANSIONS.
650 2 4 _aANALYSIS.
650 2 4 _aFUNCTIONS OF A COMPLEX VARIABLE.
650 2 4 _aSEQUENCES, SERIES, SUMMABILITY.
650 2 4 _aSEVERAL COMPLEX VARIABLES AND ANALYTIC SPACES.
700 1 _aSharma, Ambikeshwar.
_eauthor.
700 1 _aSzabados, József.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781402041747
830 0 _aSpringer Monographs in Mathematics,
_x1439-7382
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4020-4175-4
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-SMA
942 _2ddc
_cER
999 _c60758
_d60758