000 03325nam a22005295i 4500
001 978-1-4020-5258-3
003 DE-He213
005 20251006084519.0
007 cr nn 008mamaa
008 100301s2006 ne | s |||| 0|eng d
020 _a9781402052583
020 _a99781402052583
024 7 _a10.1007/1-4020-5258-8
_2doi
082 0 4 _a621.3815
_223
100 1 _aPertijs, Michiel A.P.
_eauthor.
245 1 0 _aPRECISION TEMPERATURE SENSORS IN CMOS TECHNOLOGY
_h[electronic resource] /
_cby Michiel A.P. Pertijs, Johan H. Huijsing.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2006.
300 _aXII, 301 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAnalog Circuits and Signal Processing
505 0 _aAcknowledgment -- 1. Introduction -- 2. Characteristics of Bipolar Transistors -- 3. Ratiometric Temperature Measurement Using Bipolar Transistors -- 4. Sigma-Delta Analog-To-Digital Conversion -- 5. Precision Circuit Techniques -- 6. Calibration Techniques -- 7. Realizations -- 8. Conclusions -- Appendices. A Derivation of Mismatch-Related Errors. A.1 Errors in DVBE B Resolution Limits of Sigma-Delta Modulators with a DC Input. C Non-Exponential Settling Transients -- About the Authors -- Index.
520 _aThis book describes the analysis and design of precision temperature sensors in CMOS IC technology. It focusses on so-called smart temperature sensors, which provide a digital output signal that can be readily interpreted by a computer. The sensors described in this book are based on bipolar transistors, which are available as parasitic devices in standard CMOS technology. The relevant physical properties of these devices are described. A sigma-delta converter plays a key role in the conversion to a digital output. Both the system-level design of such a converter, and the circuit-level implementation using both continuous-time and switched-capacitor techniques are described. Special attention is paid to the application of precision interfacing techniques. Precision Temperature Sensors in CMOS Technology ends with a detailed description of three realized prototypes. The final prototype achieves an inaccuracy of only ±0.1ºC (3Sigma) over the temperature range of -55ºC to 125ºC, which is the highest performance reported to date.
650 0 _aENGINEERING.
650 0 _aWEIGHTS AND MEASURES.
650 0 _aMICROWAVES.
650 0 _aELECTRONICS.
650 0 _aSYSTEMS ENGINEERING.
650 0 _aNANOTECHNOLOGY.
650 1 4 _aENGINEERING.
650 2 4 _aCIRCUITS AND SYSTEMS.
650 2 4 _aELECTRONICS AND MICROELECTRONICS, INSTRUMENTATION.
650 2 4 _aMICROWAVES, RF AND OPTICAL ENGINEERING.
650 2 4 _aMEASUREMENT SCIENCE, INSTRUMENTATION.
650 2 4 _aNANOTECHNOLOGY.
700 1 _aHuijsing, Johan H.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781402052576
830 0 _aAnalog Circuits and Signal Processing
856 4 0 _uhttp://dx.doi.org/10.1007/1-4020-5258-8
_zVer el texto completo en las instalaciones del CICY
912 _aZDB-2-ENG
942 _2ddc
_cER
999 _c61198
_d61198