Image from Google Jackets

Heteroatom-containing degradable polymers by ring-opening metathesis polymerization

Tipo de material: TextoTextoSeries Progress in Polymer Science, 139, p.101656, 2023Trabajos contenidos:
  • Xu, J., & Hadjichristidis, N
Tema(s): Recursos en línea: Resumen: The incorporation of heteroatom-containing weak bonds along polymer backbones has become a popular tool to accelerate degradation. Many methods have already been reported for the synthesis of degradable heteroatom-containing polymers based mainly on conventional step-growth polymerization and chain-growth ring-opening polymerization (ROP). In recent years, ring-opening metathesis polymer[1]ization (ROMP) has evolved as an emerging approach for the synthesis of various types of degradable polymers, from carbocyclic norbornene derivatives to heterocyclic olefin monomers. Classic ruthenium (Ru)-based catalysts exhibit not only high reactivity to C=C double bonds but also high tolerance to po[1]lar functional groups. Hence, a rich range of functional groups can be incorporated into cyclic olefin monomers and then transferred to the polymer backbones. This review covers the synthesis of the various heteroatom-containing degradable (co)polymers via ROMP, including poly(thio)acetals/polyketals, polyorthoesters, polyesters, polycarbonates, polyphosphoesters/polyphosphoamidates, poly(enol ether)s, poly(silyl ether)s, polydisulfides, polyketones, polyacylsilanes, polyamides, and polyureas, as well as their degradable mechanisms under different conditions. The review also highlights applications in tissue engineering and medicine.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-20467 (Browse shelf(Opens below)) Available

Artículo

The incorporation of heteroatom-containing weak bonds along polymer backbones has become a popular tool to accelerate degradation. Many methods have already been reported for the synthesis of degradable heteroatom-containing polymers based mainly on conventional step-growth polymerization and chain-growth ring-opening polymerization (ROP). In recent years, ring-opening metathesis polymer[1]ization (ROMP) has evolved as an emerging approach for the synthesis of various types of degradable polymers, from carbocyclic norbornene derivatives to heterocyclic olefin monomers. Classic ruthenium (Ru)-based catalysts exhibit not only high reactivity to C=C double bonds but also high tolerance to po[1]lar functional groups. Hence, a rich range of functional groups can be incorporated into cyclic olefin monomers and then transferred to the polymer backbones. This review covers the synthesis of the various heteroatom-containing degradable (co)polymers via ROMP, including poly(thio)acetals/polyketals, polyorthoesters, polyesters, polycarbonates, polyphosphoesters/polyphosphoamidates, poly(enol ether)s, poly(silyl ether)s, polydisulfides, polyketones, polyacylsilanes, polyamides, and polyureas, as well as their degradable mechanisms under different conditions. The review also highlights applications in tissue engineering and medicine.

There are no comments on this title.

to post a comment.