Enzyme Kinetics Determined Using Calorimetry: A General Assay for Enzyme Activity?
Tipo de material:
TextoSeries ; Analytical BioChemistry, 296(2), p.179-187, 2001Trabajos contenidos: - Todd, M.J
- Gomez, J
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-12179 (Browse shelf(Opens below)) | Available |
Browsing CICY shelves, Shelving location: Documento préstamo interbibliotecario, Collection: Ref1 Close shelf browser (Hides shelf browser)
Two techniques for determining enzyme kinetic constants using isothermal titration microcalorimetry are presented. The methods are based on the proportionality between the rate of a reaction and the thermal power (heat/time)generated. (i)An enzyme can be titrated with increasing amounts of substrate, while pseudo-first-order conditions are maintained. (ii)Following a single injection, the change in thermal power as substrate is depleted can be continuously monitored. Both methods allow highly precise kinetic characterization in a single experiment and can be used to measure enzyme inhibition. Applicability is demonstrated using a representative enzyme from each EC classification, including (i)oxidation-reduction activity of DHFR (EC 1.5.1.3); (ii)transferase activity of creatine phosphokinase (EC 2.7.3.2)and hexokinase (EC 2.7.1.1); (iii)hydrolytic activity of Heliobacter pylori urease (EC 3.5.1.5), trypsin (EC 3.4.21.4), and the HIV-1 protease (EC 3.4.21.16); (iv)lyase activity of heparinase (EC 4.1.1.7); and (v)ligase activity of pyruvate carboxylate (EC 6.4.1.1). This nondestructive method is completely general, enabling precise analysis of reactions in spectroscopically opaque solutions, using physiological substrates. Such a universal assay may have wide applicability in functional genomics.
There are no comments on this title.
