Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome
Tipo de material:
TextoSeries ; The EMBO Journal, 29, p.3496-3506, 2010Trabajos contenidos: - Inagaki, S
- Miura-Kamio, A
- Nakamura, Y
- Lu, F
- Cui, X
- Cao, X
- Kimura, H
- Kimura, H
- Kakutani, T
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-12242 (Browse shelf(Opens below)) | Available |
In diverse eukaryotes, constitutively silent sequences, such as transposons and repeats, are marked by methylation at histone H3 lysine 9 (H3K9me). Although selective H3K9me is critical for maintaining genome integrity, mechanisms to exclude H3K9me from active genes remain largely unexplored. Here, we show in Arabidopsis that the exclusion depends on a histone demethylase gene, IBM1 (increase in BONSAI methylation). Loss-of-function ibm1 mutation results in ectopic H3K9me and non-CG methylation in thousands of genes. The ibm1-induced genic H3K9me depends on both histone methylase KYP/SUVH4 and DNA methylase CMT3, suggesting interdependence of two epigenetic marks-H3K9me and non-CG methylation. notably, IBM1 enhances loss of H3K9me in transcriptionally de-repressed sequences. Furthermore, disruption of transcription in genes induces ectopic non-CG methylation, which mimics the loss of IBM1 function. We propose that active chromatin is stabilized by an autocatalytic loop of transcription and H3K9 demethylation. This process counteracts a similarly autocatalytic accumulation of silent epigenetic marks, H3K9me and non-CG methylation.
There are no comments on this title.
