Image from Google Jackets

Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants

Tipo de material: TextoTextoSeries ; Nature Genetics, 43, p.421-427, 2011Trabajos contenidos:
  • Chanda, B
  • Xia, Y
  • Kumar Mandal, M
  • Yu, K
  • Sekine, K
  • Gao, Q
  • Selote, D
  • Selote, D
  • Stromberg, A
  • Navarre, D
  • Kachroo, A
  • Kachroo, P
Recursos en línea: Resumen: Glycerol-3-phosphate (G3P)is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resistance (SAR). SAR is induced upon primary infection and protects distal tissues from secondary infections. Genetic mutants defective in G3P biosynthesis cannot induce SAR but can be rescued when G3P is supplied exogenously. Radioactive tracer experiments show that a G3P derivative is translocated to distal tissues, and this requires the lipid transfer protein, DIR1. Conversely, G3P is required for the translocation of DIR1 to distal tissues, which occurs through the symplast. These observations, along with the fact that dir1 plants accumulate reduced levels of G3P in their petiole exudates, suggest that the cooperative interaction of DIR1 and G3P orchestrates the induction of SAR in plants.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-12677 (Browse shelf(Opens below)) Available

Glycerol-3-phosphate (G3P)is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resistance (SAR). SAR is induced upon primary infection and protects distal tissues from secondary infections. Genetic mutants defective in G3P biosynthesis cannot induce SAR but can be rescued when G3P is supplied exogenously. Radioactive tracer experiments show that a G3P derivative is translocated to distal tissues, and this requires the lipid transfer protein, DIR1. Conversely, G3P is required for the translocation of DIR1 to distal tissues, which occurs through the symplast. These observations, along with the fact that dir1 plants accumulate reduced levels of G3P in their petiole exudates, suggest that the cooperative interaction of DIR1 and G3P orchestrates the induction of SAR in plants.

There are no comments on this title.

to post a comment.