Image from Google Jackets

A nuclear 'fossil' of the mitochondrial d-loop and the origin of modern humans

Tipo de material: TextoTextoSeries ; Nature, 378(6556), p.489-492, 1995Trabajos contenidos:
  • Zischler, H
  • Geisert, H
  • Von Haeseler, A
  • Pääbo, S
Tema(s): Recursos en línea: Resumen: Mammalian mitochondria! DNA sequences evolve more rapidly than nuclear sequences1. Although the rapid rate of evolution is an advantage for the study of closely related species and populations, it presents a problem in situations where related species, used as outgroups in phylogenetic analyses, have accumulated so much change that multiple substitutions obliterate the phylogenetic information2. However, mitochondrial DNA sequences are frequently inserted into the nuclear genome3, where they presumably evolve as nuclear pseudogene sequences and therefore more slowly than their mitochondria! counterparts. Such sequences thus represent molecular 'fossils' that could shed light on the evolution of the mitochondrial genome and could be used as outgroups in situations where no appropriate outgroup species exist. Here we show that human chromosome 11 carries a recent integration of the mitochondrial control region that can be used to gain further insight into the origin of the human mitochondrial gene pool. © 1995 Nature Publishing Group. All rights reserved.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-16403 (Browse shelf(Opens below)) Available

Mammalian mitochondria! DNA sequences evolve more rapidly than nuclear sequences1. Although the rapid rate of evolution is an advantage for the study of closely related species and populations, it presents a problem in situations where related species, used as outgroups in phylogenetic analyses, have accumulated so much change that multiple substitutions obliterate the phylogenetic information2. However, mitochondrial DNA sequences are frequently inserted into the nuclear genome3, where they presumably evolve as nuclear pseudogene sequences and therefore more slowly than their mitochondria! counterparts. Such sequences thus represent molecular 'fossils' that could shed light on the evolution of the mitochondrial genome and could be used as outgroups in situations where no appropriate outgroup species exist. Here we show that human chromosome 11 carries a recent integration of the mitochondrial control region that can be used to gain further insight into the origin of the human mitochondrial gene pool. © 1995 Nature Publishing Group. All rights reserved.

There are no comments on this title.

to post a comment.