Image from Google Jackets

Precision genome engineering through adenine base editing in plants

Tipo de material: TextoTextoSeries ; Nature Plants, 4, p.427-431, 2018Trabajos contenidos:
  • Kang, B. C
  • Yun, J. Y
  • Kim, S. T
  • Shin, Y
  • Ryu, J
  • Choi, M
  • Kim, J. S
Tema(s): Recursos en línea: Resumen: The recent development of adenine base editors (ABEs)has enabled efficient and precise A-to-G base conversions in higher eukaryotic cells. Here, we show that plant-compatible ABE systems can be successfully applied to protoplasts of Arabidopsis thaliana and Brassica napus through transient transfection, and to individual plants through Agrobacterium-mediated transformation to obtain organisms with desired phenotypes. Targeted, precise A-to-G substitutions generated a single amino acid change in the FT protein or mis-splicing of the PDS3 RNA transcript, and we could thereby obtain transgenic plants with late-flowering and albino phenotypes, respectively. Our results provide 'proof of concept' for in planta ABE applications that can lead to induced neo-functionalization or altered mRNA splicing, opening up new avenues for plant genome engineering and biotechnology.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-17095 (Browse shelf(Opens below)) Available

The recent development of adenine base editors (ABEs)has enabled efficient and precise A-to-G base conversions in higher eukaryotic cells. Here, we show that plant-compatible ABE systems can be successfully applied to protoplasts of Arabidopsis thaliana and Brassica napus through transient transfection, and to individual plants through Agrobacterium-mediated transformation to obtain organisms with desired phenotypes. Targeted, precise A-to-G substitutions generated a single amino acid change in the FT protein or mis-splicing of the PDS3 RNA transcript, and we could thereby obtain transgenic plants with late-flowering and albino phenotypes, respectively. Our results provide 'proof of concept' for in planta ABE applications that can lead to induced neo-functionalization or altered mRNA splicing, opening up new avenues for plant genome engineering and biotechnology.

There are no comments on this title.

to post a comment.