Image from Google Jackets

Functional tissue-engineered bone-like graft made of a fibrin scaffold and TG2 gene-modified EMSCs for bone defect repair

Tipo de material: TextoTextoSeries ; NPG Asia Materials, 13(1), p.1-18, 2021Trabajos contenidos:
  • Shi, W
  • Que, Y
  • Zhang, X
  • Bian, L
  • Yu, X
  • Tang, X
  • Lu, N
Recursos en línea: Resumen: The transplantation of tissue-engineered scaffolds with stem cells is a promising therapeutic approach for bone defect repair. To improve the therapeutic efficacy of this approach, in this study, a novel biofunctional live tissue-engineered bone-like graft was designed and constructed using a fibrin scaffold loaded with TG2 gene-modified ectomesenchymal stem cells (TG2-EMSCs)derived from nasal respiratory mucosa for bone defect repair. Autocalcification of the cell-free fibrin gel in osteogenic medium with additional alkaline phosphatase (ALP)and the osteogenic differentiation of TG2-EMSCs on the fibrin scaffold were assessed in vitro. The results indicated that the cell-free fibrin gel could autocalcify in the osteogenic medium with ALP and that the overexpression of TG2 by TG2-EMSCs could promote the osteogenic differentiation of these stem cells in the fibrin scaffold. Moreover, TG2 could enhance the deposition of extracellular matrix proteins in the fibrin scaffold, followed by calcification of the bone matrix in vitro. After transplantation into critical-sized cranial defects in rats, the functional tissue-engineered bone-like grafts improved bone regeneration. These results indicate that this tissue-engineered bone-like graft could improve the process of bone defect repair.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-19128 (Browse shelf(Opens below)) Available

The transplantation of tissue-engineered scaffolds with stem cells is a promising therapeutic approach for bone defect repair. To improve the therapeutic efficacy of this approach, in this study, a novel biofunctional live tissue-engineered bone-like graft was designed and constructed using a fibrin scaffold loaded with TG2 gene-modified ectomesenchymal stem cells (TG2-EMSCs)derived from nasal respiratory mucosa for bone defect repair. Autocalcification of the cell-free fibrin gel in osteogenic medium with additional alkaline phosphatase (ALP)and the osteogenic differentiation of TG2-EMSCs on the fibrin scaffold were assessed in vitro. The results indicated that the cell-free fibrin gel could autocalcify in the osteogenic medium with ALP and that the overexpression of TG2 by TG2-EMSCs could promote the osteogenic differentiation of these stem cells in the fibrin scaffold. Moreover, TG2 could enhance the deposition of extracellular matrix proteins in the fibrin scaffold, followed by calcification of the bone matrix in vitro. After transplantation into critical-sized cranial defects in rats, the functional tissue-engineered bone-like grafts improved bone regeneration. These results indicate that this tissue-engineered bone-like graft could improve the process of bone defect repair.

There are no comments on this title.

to post a comment.